Journal of Systems Engineering and Electronics ›› 2018, Vol. 29 ›› Issue (1): 8697.doi: 10.21629/JSEE.2018.01.09
• Systems Engineering • Previous Articles Next Articles
Changqiang HUANG(), Kangsheng DONG(), Hanqiao HUANG*(), Shangqin TANG(), Zhuoran ZHANG()
Received:
20170118
Online:
20180226
Published:
20180223
Contact:
Hanqiao HUANG
Email:hcqxian@163.com;kgddks@163.com;cnxahhq@126.com;carnationtang2@163.com;zhuoran1009@163.com
About author:
HUANG Changqiang was born in 1961. He received his Ph.D. degree in navigation, guidance and control from Northwestern Polytechnical University in 2006. He is a professor and doctoral tutor of Air Force Engineering University. He has worked in aerial weapon system and application engineering for more than 30 years. His current research is the autonomous air combat for unmanned combat aerial vehicle, artificial intelligence including knowledge extraction, big data application and air combat simulation system. Email: Supported by:
Changqiang HUANG, Kangsheng DONG, Hanqiao HUANG, Shangqin TANG, Zhuoran ZHANG. Autonomous air combat maneuver decision using Bayesian inference and moving horizon optimization[J]. Journal of Systems Engineering and Electronics, 2018, 29(1): 8697.
Table 1
Conditional likelihood functions of situation assessment states"
Situation for UCAV  ${\it\Gamma} ^r$  Likelihood function  Range 
Advantage  1  $p^{\vartheta ^r}(\vartheta _{k+1}^r {\it\Gamma} _{k+1}^r = j) = (90^{\circ}\vartheta _{k+1}^r)/90^{\circ}$  $0^{\circ}{\leqslant} \vartheta ^r < 90^{\circ}$ 
$p^{\vartheta ^r}(\vartheta _{k+1}^r {\it\Gamma} _{k+1}^r = j) = 0$  $90^{\circ}{\leqslant} \vartheta ^r{\leqslant} 180^{\circ}$  
$p^{\vartheta ^b}(\vartheta _{k+1}^b {\it\Gamma} _{k+1}^r = j) = (\vartheta _{k+1}^b 90^{\circ})/90^{\circ}$  0$^{\circ}{\leqslant} \vartheta ^b < 90^{\circ}$  
$p^{\vartheta ^b}(\vartheta _{k+1}^b {\it\Gamma} _{k+1}^r = j) = 0$  $90^{\circ}{\leqslant} \vartheta ^b{\leqslant} 180^{\circ}$  
$p^d(d_{k+1} {\it\Gamma} _{k+1}^r = j) = 1d_{k+1} /D_{\rm adv} $  $[0, D_{\rm adv}]$  
$p^d(d_{k+1} {\it\Gamma} _{k+1}^r = j) = 0$  $[D_{\rm adv}, \propto]$  
Disadvantage  2  $p^{\vartheta ^r}(\vartheta _{k+1}^r {\it\Gamma} _{k+1}^r = j) = 0$  $0^{\circ}{\leqslant} \vartheta ^r < 90^{\circ}$ 
$p^{\vartheta ^r}(\vartheta _{k+1}^r {\it\Gamma} _{k+1}^r = j) = (90^{\circ}\vartheta _{k+1}^r)/90^{\circ}$  $^{\circ}{\leqslant} \vartheta ^r{\leqslant} 180^{\circ}$  
$p^{\vartheta ^b}(\vartheta _{k+1}^b {\it\Gamma} _{k+1}^r = j) = (90^{\circ}\vartheta _{k+1}^b)/90^{\circ}$  $^{\circ}{\leqslant} \vartheta ^b < 90^{\circ}$  
$p^{\vartheta ^b}(\vartheta _{k+1}^b {\it\Gamma} _{k+1}^r = j) = 0$  $90^{\circ}{\leqslant} \vartheta ^b{\leqslant} 180^{\circ}$  
$p^d(d_{k+1} {\it\Gamma} _{k+1}^r = j) = 1d_{k+1}/D_{\rm adv} $  $[0, D_{\rm adv}]$  
$p^d(d_{k+1} {\it\Gamma} _{k+1}^r = j) = 0$  $[D_{\rm adv}, \propto]$  
Mutual safe  3  $p^{\vartheta ^r}(\vartheta _{k+1}^r {\it\Gamma} _{k+1}^r = j) = (\vartheta _{k+1}^r90^{\circ})/90^{\circ}$  $0^{\circ}{\leqslant} \vartheta ^r < 90^{\circ}$ 
$p^{\vartheta ^r}(\vartheta _{k+1}^r {\it\Gamma} _{k+1}^r = j) = 0$  $90^{\circ}{\leqslant} \vartheta ^r{\leqslant} 180^{\circ}$  
$p^{\vartheta ^b}(\vartheta _{k+1}^b {\it\Gamma} _{k+1}^r = j) = 0$  $0^{\circ}{\leqslant} \vartheta ^b < 90^{\circ}$  
$p^{\vartheta ^b}(\vartheta _{k+1}^b {\it\Gamma} _{k+1}^r = j) = (\vartheta _{k+1}^b 90^{\circ})/90^{\circ}$  $90^{\circ}{\leqslant} \vartheta ^b{\leqslant} 180^{\circ}$  
$p^d(d_{k+1} {\it\Gamma} _{k+1}^r = j) = d_{k+1}/D_{\rm adv} $  $[0, D_{\rm adv}]$  
$p^d(d_{k+1} {\it\Gamma} _{k+1}^r = j) = 1$  $[D_{\rm adv}, \propto]$  
Mutual disadvantage  4  $p^{\vartheta ^r}(\vartheta _{k+1}^r {\it\Gamma} _{k+1}^r = j) = (90^{\circ}\vartheta _{k+1}^r)/90^{\circ}$  $0^{\circ}{\leqslant} \vartheta ^r < 90^{\circ}$ 
$p^{\vartheta ^r}(\vartheta _{k+1}^r {\it\Gamma} _{k+1}^r = j) = 0$  $90^{\circ}{\leqslant} \vartheta ^r{\leqslant} 180^{\circ}$  
$p^{\vartheta ^b}(\vartheta _{k+1}^b {\it\Gamma} _{k+1}^r = j) = 90\vartheta _{k+1}^b /90$  $0^{\circ}{\leqslant} \vartheta ^b < 90^{\circ}$  
$p^{\vartheta ^b}(\vartheta _{k+1}^b {\it\Gamma} _{k+1}^r = j) = (\vartheta _{k+1}^b 90)/90$  $90^{\circ}{\leqslant} \vartheta ^b{\leqslant} 180^{\circ}$  
$p^d(d_{k+1}{\it\Gamma} _{k+1}^r = j) = d_{k+1}/D_{\rm adv} $  $[0, D_{\rm adv}]$  
$p^d(d_{k+1}{\it\Gamma} _{k+1}^r = j) = 0$  $[D_{\rm adv}, \propto]$ 
1  ERNEST N, CARROLL D, SCHUMACHER C, et al. Genetic fuzzy based artificial intelligence for unmanned combat aerial vehicle control in simulated air combat missions. Journal of Defense Management, 2016, 6 (1): 144. 
2 
KARIMI J, POURTAKDOUST S H. Optimal maneuverbased motion planning over terrain and threats using a dynamic hybrid PSO algorithm. Aerospace Science and Technology, 2013, 26 (1): 60 71.
doi: 10.1016/j.ast.2012.02.014 
3 
FRAZZOLI E, DAHLEH M A, FERON E. Realtime motion planning for agile autonomous vehicles. Journal of Guidance, Control and Dynamics, 2002, 25 (1): 116 129.
doi: 10.2514/2.4856 
4  HUANG C Q, DING D L, Huang H Q, et al. Autonomous attack technology for UCAV. Beijing: National Defense Industry Press, 2014. 
5  D oD. Unmanned systems integrated roadmap: FY20132038. Washington DC: Office of the Under Secretary of Defense (Acquisition Technology and Logistics), 2013. 
6 
AUSTIN F, CARBONE G, HINZ H, et al. Game theory for automated maneuvering during airtoair combat. Journal of Guidance, Control, and Dynamics, 1990, 13 (6): 1143 1149.
doi: 10.2514/3.20590 
7 
PARK H, LEE B Y, TAHK M J, et al. Differential game based air combat maneuver generation using scoring function matrix. International Journal of Aeronautical and Space Sciences, 2016, 17 (2): 204 213.
doi: 10.5139/IJASS.2016.17.2.204 
8  CHE J, QIAN W Q, HE Z C. Attackdefense confrontation simulation of air combat based on gamematrix approach. Flight Dynamics, 2015, 33 (2): 173 177. 
9 
POROPUDAS J, VIRTANEN K. Gametheoretic validation and analysis of air combat simulation models. IEEE Trans. on Systems, Man, and CyberneticsPart A: Systems and Humans, 2010, 40 (5): 1057 1070.
doi: 10.1109/TSMCA.2010.2044997 
10  SUN T Y, TSAI S, LEE Y, et al. The study on intelligent advanced fighter air combat decision support system. Proc. of the IEEE International Conference on Information Reuse & Integration, 2006: 3944. 
11 
VIRTANEN K, RAIVIO T, RAIMO P H. Decision theoretical approach to pilot simulation. Journal of Aircraft, 1999, 36 (4): 632 641.
doi: 10.2514/2.2505 
12 
ZHONG L, TONG M A, ZHONG W, et al. Sequential maneuvering decisions based on multistage influence diagram in air combat. Journal of Systems Engineering and Electronics, 2007, 18 (3): 551 555.
doi: 10.1016/S10044132(07)601285 
13 
VIRTANEN K, RAIVIO T, HÄMÄLÄINEN R P. Modeling pilot's sequential maneuvering decisions by a multistage influence diagram. Journal of Guidance, Control, and Dynamics, 2004, 27 (4): 665 677.
doi: 10.2514/1.11167 
14  MCGREW J S, HOW J P, WILLIAMS B, et al. Air combat strategy using approximate dynamic programming. Journal of Guidance Control & Dynamics, 2010, 33 (5): 1641 1654. 
15  MCGREW J S. Realtime maneuvering decisions for autonomous air combat. Massachusetts, U.S.: Massachusetts Institute of Technology, 2008. 
16  MA Y, MA X, SONG X. A case study on air combat decision using approximated dynamic programming. Mathematical Problems in Engineering, 2014, 18340. 
17 
MUKAI H, TANIKAWA A, TUNAY I, et al. Sequential linearquadratic method for differential games with air combat applications. Computational Optimization and Applications, 2003, 25 (1/3): 193 222.
doi: 10.1023/A:1022957123924 
18 
MAURO P, BRUCE A C. Numerical solution of the threedimensional orbital pursuitevasion games. Journal of Guidance, Control, and Dynamics, 2009, 32 (2): 474 487.
doi: 10.2514/1.37962 
19 
HORIE K, CONWAY B A. Optimal fighter pursuitevasion maneuvers found via twosided optimization. Journal of Guidance, Control, and Dynamics, 2006, 29 (1): 105 112.
doi: 10.2514/1.3960 
20 
IMADO F, KURODA T. Family of local solutions in a missileaircraft differential game. Journal of Guidance, Control, and Dynamics, 2011, 34 (2): 583 591.
doi: 10.2514/1.48345 
21  FU L, XIE F, WANG D, et al. The overview for UAV aircombat decision method. Proc. of the 26th Chinese Control and Decision Conference, 2014: 33803384. 
22 
ENDSLEY M R. A survey of situation awareness requirements in airtoair combat fighters. International Journal of Aviation Psychology, 1993, 3 (2): 157 168.
doi: 10.1207/s15327108ijap0302_5 
23  RAO N P, KASHYAP S K, GIRIJA G. Situation assessment in aircombat: a fuzzyBayesian hybrid approach. Proc. of the International Conference on Aerospace Science and Technology, 2008: 063. 
24  GALLAGHER M, MACKENZIE C, BLUM D, et al. Improving risk assessment communication. Military Operations Research, 2016, 21 (1): 5 20. 
25  NGUYEN D, FISHER D C, RYAN L. Agraphbased approach to situation assessment. Proc. of the AIAA Infotech Aerospace, 2010: 16. 
26  PREVOST C G, THÉRIAULT O, DESBIENS A, et al. Receding horizon modelbased predictive control for dynamic target tracking: a comparative study. Proc. of the AIAA Guidance, Navigation, and Control Conference, 2009: 19. 
27 
KARELAHTI J, VIRTANEN K, RAIVIO T. Nearoptimal missile avoidance trajectories via receding horizon control. Journal of Guidance, Control, and Dynamics, 2007, 30 (5): 1287 1298.
doi: 10.2514/1.26024 
28 
ZHANG Y, CHEN J, SHEN L. Realtime trajectory planning for UCAV airtosurface attack using inverse dynamics optimization method and receding horizon control. Chinese Journal of Aeronautics, 2013, 26 (4): 1038 1056.
doi: 10.1016/j.cja.2013.04.040 
29 
VIRTANEN K, KARELAHTI J, RAIVIO T. Modeling air combat by a moving horizon influence diagram game. Journal of Guidance, Control, and Dynamics, 2006, 29 (5): 1080 1091.
doi: 10.2514/1.17168 
30 
KOUBA G, BOTEZ R M, BOELY N. Fuzzy logic method use in F/A18 aircraft model identification. Journal of Aircraft, 2010, 47 (1): 10 17.
doi: 10.2514/1.40714 
31 
ERNEST N, COHEN K, KIVELEVITCH E, et al. Genetic fuzzy trees and their application towards autonomous training and control of a squadron of unmanned combat aerial vehicles. Unmanned Systems, 2015, 3 (3): 185 204.
doi: 10.1142/S2301385015500120 
32  AKABARI S, MENHAJ M B, NIKRAVESH S K. Fuzzy modeling of offensive maneuvers in an airtoair combat. Proc. of the Computational Intelligence, Theory and Applications, 2005: 171184. 
33  PASHAYEV A, ASKEROV D, SADIQOV R, et al. Fuzzyneural approach for aircraft gas turbine engines diagnosing. Proc. of AIAA Intelligent Systems Technical Conference, 2006: 484486. 
34  HÜLNHAGEN T, DENGLER I, TAMKE A, et al. Maneuver recognition using probabilistic finitestate machines and fuzzy logic. Proc. of the IEEE Intelligent Vehicles Symposium, 2010: 6570. 
35 
WANG Y J, DONG J, LIU X, et al. Identification and standardization of maneuvers based upon operational flight data. Chinese Journal of Aeronautics, 2015, 28 (1): 133 140.
doi: 10.1016/j.cja.2014.12.026 
36 
DONG Y, AI J. Trial input method and ownaircraft state prediction in autonomous air combat. Journal of Aircraft, 2012, 49 (3): 947 954.
doi: 10.2514/1.C031671 
37 
HERBST W B. Dynamics of air combat. Journal of Aircraft, 1983, 20 (7): 594 598.
doi: 10.2514/3.44916 
38 
HUI Y L, NAN Y, CHEN S D, et al. Dynamic attack zone of airtoair mission after being launched in random wind field. Chinese Journal of Aeronautics, 2015, 28 (5): 1519 1528.
doi: 10.1016/j.cja.2015.08.013 
39  MCDAID A F, MURPHY T B, FRIEL N, et al. Improved Bayesian inference for the stochastic block model with application to large networks. Computational Statistics & Data Analysis, 2012, 60 (4): 12 31. 
40  VIERTL R, SUNANTA O. Fuzzy Bayesian inference. Metron, 2013, 71 (3): 207 216. 
41  SYNNAEVE G, BESSIERE P. Special tactics: a bayesian approach to tactical decisionmaking. Proc. of IEEE Conference on Computational Intelligence and Games, 2012: 409416. 
[1]  Junming HU, Hongzhong HUANG, Yanfeng LI. Bayesian estimation of a power law process with incomplete data [J]. Journal of Systems Engineering and Electronics, 2021, 32(1): 243251. 
[2]  Rudong ZHAO, Xianming SHI, Qian WANG, Xiaobo SU, Xing SONG. Bayesian inference for ammunition demand based on Gompertz distribution [J]. Journal of Systems Engineering and Electronics, 2020, 31(3): 567577. 
[3]  Zhuoming LI, Xing CHEN, Yu ZHANG, Peng WANG, Wei QIANG, Ningqing LIU. Fuzzy mathematics and game theory based D2D multicast network construction [J]. Journal of Systems Engineering and Electronics, 2019, 30(1): 1321. 
[4]  Liang WANG, Huanyu LI, Jin'ge MA. Inference for dependence competing risks from bivariate exponential model under generalized progressive hybrid censoring with partially observed failure causes [J]. Journal of Systems Engineering and Electronics, 2019, 30(1): 201208. 
[5]  Qinghua HAN, Minghai PAN, Wucai ZHANG, Zhiheng LIANG. Time resource management of OAR based on fuzzy logic priority for multiple target tracking [J]. Journal of Systems Engineering and Electronics, 2018, 29(4): 742755. 
[6]  Ximeng XU, Rennong YANG, Ying FU. Situation assessment for air combat based on novel semisupervised naive Bayes [J]. Journal of Systems Engineering and Electronics, 2018, 29(4): 768779. 
[7]  Qingchun Li, Wensheng Zhang, Gang Han, and Yuan Xie. Fuzzy sliding mode control guidance law with terminal impact angle and acceleration constraints [J]. Systems Engineering and Electronics, 2016, 27(3): 664679. 
Viewed  
Full text 


Abstract 

