Journal of Systems Engineering and Electronics ›› 2018, Vol. 29 ›› Issue (2): 386-404.doi: 10.21629/JSEE.2018.02.19
• Software Algorithm and Simulation • Previous Articles Next Articles
Zhuoran ZHANG1(), Changqiang HUANG1(), Hanqiao HUANG2,*(), Shangqin TANG1(), Kangsheng DONG1()
Received:
2017-10-20
Online:
2018-04-26
Published:
2018-04-27
Contact:
Hanqiao HUANG
E-mail:zhuoran1009@163.com;hcqxian@163.com;cnxahhq@126.com;carnationtang2@163.com;kgddks@163.com
About author:
ZHANG Zhuoran was born in 1990. He received his M.S. degree in unmanned aircraft combat system and technology from Air Force Engineering University in 2015. He is a Ph.D. candidate of Air Force Engineering University. His research interests include the optimization algorithm and its application in unmanned aerial vehicle combat system. E-mail: Supported by:
Zhuoran ZHANG, Changqiang HUANG, Hanqiao HUANG, Shangqin TANG, Kangsheng DONG. An optimization method: hummingbirds optimization algorithm[J]. Journal of Systems Engineering and Electronics, 2018, 29(2): 386-404.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Description of the benchmark functions (U: unimodal; M: multimodal; Dim: dimension)"
Test function | Name | Type | Dim | Range | Optimum |
Sphere | U | 30 | [–100, 100] | 0 | |
Schwefel 2.22 | U | 30 | [–10, 10] | 0 | |
Schwefel 1.2 | U | 30 | [–100, 100] | 0 | |
Rosenbrock | U | 30 | [–30, 30] | 0 | |
Quartic | U | 30 | [–1.28, 1.28] | 0 | |
Schwefel 2.26 | M | 30 | [–500, 500] | – 418.982 9*Dim | |
Rastrigin | M | 30 | [–5.12, 5.12] | 0 | |
Ackley | M | 30 | [–32, 32] | 8.8818E-16 | |
Griewank | M | 30 | [–600, 600] | 0 | |
Penalized | M | 30 | [– 50, 50] | 0 | |
Table 2
Statistical results of five unimodal functions for four algorithms"
Function | Metric | PSO | AFSA | ABC | HOA |
Best | 4.4661E-09 | 5.6944E+00 | 6.0932E-11 | 0 | |
Worst | 5.3809E-07 | 8.0334E+00 | 1.5289E-09 | 0 | |
Mean | 1.0592E-07 | 6.9494E+00 | 4.3182E-10 | 0 | |
SD | 1.3464E-07 | 7.0391E-01 | 4.0839E-10 | 0 | |
Rank | 3 | 4 | 2 | 1 | |
Best | 5.1065E-06 | 1.0288E+01 | 6.2532E-07 | 1.3252E-229 | |
Worst | 7.4840E-05 | 1.6562E+01 | 3.1236E-06 | 2.4570E-199 | |
Mean | 1.9743E-05 | 1.4761E+01 | 2.0404E-06 | 8.3443E-201 | |
SD | 1.4384E-05 | 1.4411E+00 | 7.0388E-07 | 0 | |
Rank | 3 | 4 | 2 | 1 | |
Best | 3.6639E+01 | 2.6562E+01 | 5.4211E+03 | 0 | |
Worst | 1.3955E+02 | 5.0529E+01 | 1.4716E+04 | 0 | |
Mean | 7.9331E+01 | 3.8830E+01 | 1.0391E+04 | 0 | |
SD | 2.6585E+01 | 5.9073E+00 | 2.0738E+03 | 0 | |
Rank | 3 | 2 | 4 | 1 | |
Best | 1.5490E+01 | 6.8621E+02 | 7.8929E-03 | 1.2122E-03 | |
Worst | 2.4689E+02 | 1.7763E+03 | 7.0644E+00 | 1.7633E+00 | |
Mean | 6.1495E+01 | 1.1777E+03 | 2.0521E+00 | 2.1932E-01 | |
SD | 6.3004E+01 | 2.5344E+02 | 2.1603E+00 | 4.0761E-01 | |
Rank | 3 | 4 | 2 | 1 | |
Best | 2.0420E-02 | 1.2235E+01 | 8.0045E-02 | 1.0886E-05 | |
Worst | 1.3401E-01 | 2.7191E+01 | 2.3204E-01 | 2.5065E-03 | |
Mean | 5.5557E-02 | 2.0114E+01 | 1.5399E-01 | 7.0678E-04 | |
SD | 2.3476E-02 | 3.4812E+00 | 3.2530E-02 | 6.2312E-04 | |
Rank | 2 | 4 | 3 | 1 | |
Average rank | 2.8 | 3.6 | 2.6 | 1 | |
Overall rank | 3 | 4 | 2 | 1 |
Table 3
Statistical results of five multimodal functions for four algorithms"
Function | Metric | PSO | AFSA | ABC | HOA |
Best | – 8.1474E+03 | – 9.0509E+03 | – 1.2451E+04 | – 9.1108E+03 | |
Worst | – 5.1071E+03 | – 7.1022E+03 | – 1.2080E+04 | – 6.3858E+03 | |
Mean | – 6.6989E+03 | – 7.8385E+03 | – 1.2258E+04 | – 8.2889E+03 | |
SD | 7.4309E+02 | 4.9643E+02 | 1.0206E+02 | 6.4126E+02 | |
Rank | 4 | 3 | 1 | 2 | |
Best | 2.3879E+01 | 2.0079E+02 | 2.5841E-10 | 0 | |
Worst | 6.9647E+01 | 2.4204E+02 | 9.9497E-01 | 0 | |
Mean | 4.0728E+01 | 2.2493E+02 | 6.6331E-02 | 0 | |
SD | 1.1002E+01 | 1.0023E+01 | 2.5243E-01 | 0 | |
Rank | 3 | 4 | 2 | 1 | |
Best | 2.1826E-06 | 3.3679E+00 | 2.8043E-06 | 0 | |
Worst | 2.5074E-05 | 3.9042E+00 | 1.8588E-05 | 0 | |
Mean | 1.0056E-05 | 3.6668E+00 | 1.1395E-05 | 0 | |
SD | 5.5968E-06 | 1.4558E-01 | 4.4298E-06 | 0 | |
Rank | 2 | 4 | 3 | 1 | |
Best | 2.9294E-07 | 1.3534E+01 | 1.7291E-10 | 0 | |
Worst | 5.4083E-02 | 5.2048E+01 | 2.8638E-06 | 0 | |
Mean | 1.4776E-02 | 3.5190E+01 | 2.5593E-07 | 0 | |
SD | 1.4790E-02 | 1.1422E+01 | 6.9536E-07 | 0 | |
Rank | 3 | 4 | 2 | 1 | |
Best | 5.6210E-01 | 7.5819E-01 | 1.1747E-12 | 7.2501E-05 | |
Worst | 4.5167E+00 | 1.2770E+00 | 8.2437E-11 | 1.2187E-02 | |
Mean | 2.3753E+00 | 1.0301E+00 | 1.5396E-11 | 2.7549E-03 | |
SD | 1.0560E+00 | 1.5043E-01 | 1.7705E-11 | 2.9718E-03 | |
Rank | 4 | 3 | 1 | 2 | |
Average rank | 3.2 | 3.6 | 1.8 | 1.4 | |
Overall rank | 3 | 4 | 2 | 1 |
Table 4
Control parameters of eight compared algorithms"
Algorithm | Specification |
CS | |
GSA | |
FA | |
GWO | |
MFO | |
CSA | |
SCA | |
SBO |
Table 5
Statistical results of five unimodal functions for nine algorithms"
Function | Metric | CS | GSA | FA | GWO | MFO | CSA | SCA | SBO | HOA | |
Best | 3.1873E-03 | 2.2356E-18 | 3.2175E-04 | 3.3152E-87 | 1.0556E-35 | 4.6416E-04 | 3.4963E-44 | 7.2106E-04 | 0 | ||
Worst | 1.8546E-02 | 5.1571E-18 | 9.9751E-04 | 5.0603E-84 | 1.5940E-31 | 2.2371E-02 | 6.8963E-35 | 4.8623E-03 | 0 | ||
Mean | 8.8861E-03 | 3.8401E-18 | 5.5797E-04 | 3.3557E-85 | 1.1267E-32 | 5.1425E-03 | 3.9021E-36 | 1.8193E-03 | 0 | ||
SD | 3.6808E-03 | 7.6262E-19 | 1.7113E-04 | 9.5395E-85 | 2.9352E-32 | 5.5721E-03 | 1.3694E-35 | 9.5993E-04 | 0 | ||
Rank | 9 | 5 | 6 | 2 | 4 | 8 | 3 | 7 | 1 | ||
Best | 4.6496E-01 | 7.7224E-09 | 1.1523E+01 | 2.5968E-50 | 3.4803E-21 | 1.7892E-01 | 4.9622E-28 | 9.2507E-03 | 1.0777E-222 | ||
Worst | 3.0992E+00 | 1.3183E-08 | 1.2012E+02 | 7.2046E-49 | 4.2380E-19 | 1.6354E+00 | 3.6748E-23 | 1.8586E-02 | 5.7755E-197 | ||
Mean | 1.2720E+00 | 1.0131E-08 | 5.7526E+01 | 2.6832E-49 | 1.0203E-19 | 7.8482E-01 | 4.9188E-24 | 1.1883E-02 | 1.9367E-198 | ||
SD | 5.6264E-01 | 1.2349E-09 | 3.3051E+01 | 2.0623E-49 | 9.7286E-20 | 4.9658E-01 | 9.5048E-24 | 2.2940E-03 | 0 | ||
Rank | 8 | 5 | 9 | 2 | 4 | 7 | 3 | 6 | 1 | ||
Best | 2.2965E+02 | 5.9359E+01 | 2.8976E+03 | 2.1684E-31 | 4.8183E-15 | 3.1720E+00 | 5.6985E-25 | 2.7381E+01 | 0 | ||
Worst | 7.7555E+02 | 2.1078E+02 | 9.6717E+03 | 1.0079E-25 | 6.6667E+03 | 2.1382E+01 | 7.7601E-14 | 1.2536E+02 | 0 | ||
Mean | 4.8197E+02 | 1.0621E+02 | 5.5386E+03 | 6.9282E-27 | 2.2222E+02 | 8.8877E+00 | 2.5954E-15 | 5.7587E+01 | 0 | ||
SD | 1.3122E+02 | 3.7795E+01 | 1.7061E+03 | 2.0630E-26 | 1.2172E+03 | 5.0462E+00 | 1.4166E-14 | 2.1035E+01 | 0 | ||
Rank | 8 | 6 | 9 | 2 | 7 | 4 | 3 | 5 | 1 | ||
Best | 2.9232E+01 | 2.5830E+01 | 2.2550E+01 | 2.4873E+01 | 8.1081E-01 | 2.5915E+01 | 6.2365E+00 | 3.7705E+00 | 1.2702E-03 | ||
Worst | 7.0603E+01 | 9.3011E+01 | 2.8434E+04 | 2.7920E+01 | 3.0199E+03 | 1.2433E+02 | 7.3753E+00 | 3.6187E+02 | 1.0433E+00 | ||
Mean | 3.8122E+01 | 2.8263E+01 | 2.7620E+03 | 2.6117E+01 | 3.1340E+02 | 4.3232E+01 | 6.8795E+00 | 7.1427E+01 | 1.7314E-01 | ||
SD | 1.0049E+01 | 1.2230E+01 | 6.0837E+03 | 7.3272E-01 | 9.1759E+02 | 2.7732E+01 | 4.0504E-01 | 8.5066E+01 | 2.8961E-01 | ||
Rank | 5 | 4 | 9 | 3 | 8 | 6 | 2 | 7 | 1 | ||
Best | 1.8749E-02 | 2.5682E-03 | 5.7134E+01 | 7.0008E-05 | 3.5000E-04 | 5.0821E-03 | 2.3530E-05 | 1.4931E-02 | 1.7315E-05 | ||
Worst | 7.2482E-02 | 1.0297E-02 | 8.5993E+01 | 5.2054E-04 | 2.8998E-03 | 1.9171E-02 | 1.1278E-03 | 3.6658E-02 | 2.9103E-03 | ||
Mean | 3.5559E-02 | 5.3473E-03 | 8.5031E+01 | 2.2807E-04 | 1.5665E-03 | 1.0681E-02 | 2.9819E-04 | 2.6566E-02 | 7.1999E-04 | ||
SD | 1.1799E-02 | 1.8592E-03 | 5.2689E+00 | 1.1727E-04 | 6.9356E-04 | 3.7847E-03 | 2.8251E-04 | 5.1333E-03 | 6.5413E-04 | ||
Rank | 8 | 5 | 9 | 1 | 4 | 6 | 2 | 7 | 3 | ||
Average rank | 7.6 | 5 | 8.4 | 2 | 5.4 | 6.2 | 2.6 | 6.4 | 1.4 | ||
Overall rank | 8 | 4 | 9 | 2 | 5 | 6 | 3 | 7 | 1 |
Table 6
Statistical results of five multimodal functions for nine algorithms"
Function | Algorithm | CS | GSA | FA | GWO | MFO | CSA | SCA | SBO | HOA |
Best | – 9.2290E+03 | – 4.2079E+03 | – 9.0932E+03 | – 7.5366E+03 | – 1.0904E+04 | – 9.1925E+03 | – 2.7944E+03 | – 8.1080E+03 | – 9.4367E+03 | |
Worst | – 8.2272E+03 | – 2.4576E+03 | – 6.4878E+03 | – 3.9478E+03 | – 7.5818E+03 | – 5.3633E+03 | – 2.0971E+03 | – 4.6926E+03 | – 7.0501E+03 | |
Mean | – 8.6647E+03 | – 3.1353E+03 | – 7.7504E+03 | – 6.2036E+03 | – 9.1032E+03 | – 7.2524E+03 | – 2.4232E+03 | – 6.0269E+03 | – 8.1011E+03 | |
SD | 2.3800E+02 | 3.9793E+02 | 5.2527E+02 | 8.2229E+02 | 7.6905E+02 | 8.7286E+02 | 1.6963E+02 | 8.9981E+02 | 5.7228E+02 | |
Rank | 2 | 8 | 4 | 6 | 1 | 5 | 9 | 7 | 3 | |
Best | 6.0216E+01 | 2.9849E+00 | 2.8854E+01 | 0 | 1.9899E+00 | 2.9980E+00 | 0 | 2.6865E+01 | 0 | |
Worst | 1.1102E+02 | 1.1940E+01 | 1.0447E+02 | 0 | 3.6884E+01 | 3.4827E+01 | 2.3922E+01 | 5.5719E+01 | 0 | |
Mean | 8.3875E+01 | 7.5285E+00 | 6.5800E+01 | 0 | 1.4472E+01 | 1.7269E+01 | 7.9740E-01 | 4.3258E+01 | 0 | |
SD | 1.1548E+01 | 2.1496E+00 | 1.7857E+01 | 0 | 1.0085E+01 | 7.5528E+00 | 4.3676E+00 | 7.5163E+00 | 0 | |
Rank | 9 | 4 | 8 | 1 | 5 | 6 | 3 | 7 | 1 | |
Best | 1.8952E+00 | 1.2627E-09 | 2.1203E+00 | 7.9936E-15 | 4.4409E-15 | 1.5019E+00 | 8.8818E-16 | 7.1657E-03 | 8.8818E-16 | |
Worst | 9.3048E+00 | 1.8461E-09 | 1.1949E+01 | 1.5099E-14 | 4.4409E-15 | 3.8363E+00 | 4.4409E-15 | 1.6477E-02 | 8.8818E-16 | |
Mean | 4.5589E+00 | 1.5474E-09 | 4.0139E+00 | 1.0007E-14 | 4.4409E-15 | 2.6001E+00 | 4.0856E-15 | 1.0522E-02 | 8.8818E-16 | |
SD | 2.0045E+00 | 1.4669E-10 | 1.9598E+00 | 2.5861E-15 | 0 | 6.0866E-01 | 1.0840E-15 | 2.2961E-03 | 0 | |
Rank | 9 | 5 | 8 | 4 | 3 | 7 | 2 | 6 | 1 | |
Best | 4.0521E-02 | 1.1490E+00 | 2.9338E-03 | 0 | 3.4448E-02 | 9.2387E-03 | 0 | 1.9840E-03 | 0 | |
Worst | 2.4749E-01 | 2.5729E+00 | 6.8436E-02 | 1.7903E-02 | 2.6566E-01 | 9.8607E-02 | 2.7968E-01 | 7.8375E-01 | 0 | |
Mean | 9.7669E-02 | 1.6150E+00 | 2.2698E-02 | 5.9675E-04 | 1.4386E-01 | 5.0072E-02 | 1.1920E-02 | 1.3485E-01 | 0 | |
SD | 4.8698E-02 | 3.6852E-01 | 1.3938E-02 | 3.2686E-03 | 7.4666E-02 | 2.5063E-02 | 5.2127E-02 | 1.8202E-01 | 0 | |
Rank | 6 | 9 | 4 | 2 | 8 | 5 | 3 | 7 | 1 | |
Best | 4.5344E-01 | 1.7571E-20 | 2.6879E+00 | 3.0032E-07 | 4.7116E-32 | 5.7406E-03 | 1.3029E-02 | 3.1810E-06 | 6.3640E-05 | |
Worst | 1.5468E+00 | 1.0367E-01 | 2.6805E+01 | 3.2467E-02 | 1.6909E-31 | 2.8469E+00 | 9.7563E-02 | 4.2273E-03 | 1.4864E-02 | |
Mean | 9.6076E-01 | 1.7104E-02 | 1.0422E+01 | 1.2261E-02 | 5.5095E-32 | 6.7057E-01 | 4.7943E-02 | 1.5976E-04 | 2.7611E-03 | |
SD | 2.5509E-01 | 3.8910E-02 | 5.1881E+00 | 8.5137E-03 | 2.2900E-32 | 6.3986E-01 | 1.9819E-02 | 7.6901E-04 | 3.5082E-03 | |
Rank | 8 | 5 | 9 | 4 | 1 | 7 | 6 | 2 | 3 | |
Average rank | 6.8 | 6.2 | 6.6 | 3.4 | 3.6 | 6 | 4.6 | 5.8 | 1.8 | |
Overall rank | 9 | 7 | 8 | 2 | 3 | 6 | 4 | 5 | 1 |
Table 7
Results of a Wilcoxon signed ranks test based on the best solution for each function with 30 independent runs $(a = 0.05)$"
Function | CS vs HOA | GSA vs HOA | FA vs HOA | GWO vs HOA | MFO vs HOA | CSA vs HOA | SCA vs HOA | SBO vs HOA | ||||||||||||||||||||||||||||||||
R+ | R- | Win | R+ | R- | Win | R+ | R- | Win | R+ | R- | Win | R+ | R- | Win | R+ | R- | Win | R+ | R- | Win | R+ | R- | Win | |||||||||||||||||
1.7344E-06 | 465 | 0 | + | 1.7344E-06 | 465 | 0 | + | 1.7344E-06 | 465 | 0 | + | 1.7344E-06 | 465 | 0 | + | 1.7344E-06 | 465 | 0 | + | 1.7344E-06 | 465 | 0 | + | 1.7344E-06 | 465 | 0 | + | 1.7344E-06 | 465 | 0 | + | |||||||||
1.7344E-06 | 465 | 0 | + | 1.7344E-06 | 465 | 0 | + | 1.7344E-06 | 465 | 0 | + | 1.7344E-06 | 465 | 0 | + | 1.7344E-06 | 465 | 0 | + | 1.7344E-06 | 465 | 0 | + | 1.7344E-06 | 465 | 0 | + | 1.7344E-06 | 465 | 0 | + | |||||||||
1.7344E-06 | 465 | 0 | + | 1.7344E-06 | 465 | 0 | + | 1.7344E-06 | 465 | 0 | + | 1.7344E-06 | 465 | 0 | + | 1.7344E-06 | 465 | 0 | + | 1.7344E-06 | 465 | 0 | + | 1.7344E-06 | 465 | 0 | + | 1.7344E-06 | 465 | 0 | + | |||||||||
1.7344E-06 | 465 | 0 | + | 1.7344E-06 | 465 | 0 | + | 1.7344E-06 | 465 | 0 | + | 1.7344E-06 | 465 | 0 | + | 1.7344E-06 | 465 | 0 | + | 1.7344E-06 | 465 | 0 | + | 1.7344E-06 | 465 | 0 | + | 1.7344E-06 | 465 | 0 | + | |||||||||
1.9209E-06 | 465 | 0 | + | 1.7344E-06 | 465 | 0 | + | 1.7344E-06 | 465 | 0 | + | 1.7344E-06 | 465 | 0 | + | 2.2248E-04 | 412 | 53 | + | 1.7344E-06 | 465 | 0 | + | 6.8359E-03 | 101 | 364 | - | 1.7344E-06 | 465 | 0 | + | |||||||||
1.8910E-04 | 51 | 414 | - | 1.7344E-06 | 465 | 0 | + | 3.3269E-02 | 336 | 129 | + | 1.2506E-04 | 46 | 419 | - | 5.7924E-05 | 37 | 428 | - | 2.6134E-06 | 410 | 55 | + | 1.7344E-06 | 465 | 0 | + | 3.1817E-06 | 459 | 6 | + | |||||||||
1.7344E-06 | 465 | 0 | + | 1.6416E-06 | 465 | 0 | + | 1.7344E-06 | 465 | 0 | + | 1.0000E+00 | 0 | 0 | ≈ | 1.7224E-06 | 465 | 0 | + | 1.7344E-06 | 465 | 0 | + | 1.7971E-01 | 3 | 0 | ≈ | 1.7344E-06 | 465 | 0 | + | |||||||||
1.7344E-06 | 465 | 0 | + | 1.7344E-06 | 465 | 0 | + | 1.7344E-06 | 465 | 0 | + | 9.2745E-07 | 465 | 0 | + | 4.3205E-08 | 465 | 0 | + | 1.7344E-06 | 465 | 0 | + | 2.0346E-07 | 378 | 0 | + | 1.7344E-06 | 465 | 0 | + | |||||||||
1.7344E-06 | 465 | 0 | + | 1.7344E-06 | 465 | 0 | + | 1.7344E-06 | 465 | 0 | + | 3.1731E-01 | 1 | 0 | ≈ | 1.7344E-06 | 465 | 0 | + | 1.7344E-06 | 465 | 0 | + | 2.7708E-02 | 21 | 0 | + | 3.1731E-01 | 1 | 0 | ≈ | |||||||||
1.7344E-06 | 465 | 0 | + | 5.7096E-02 | 140 | 325 | - | 1.7344E-06 | 465 | 0 | + | 2.3704E-05 | 438 | 27 | + | 1.7344E-06 | 0 | 465 | - | 2.3534E-06 | 462 | 3 | + | 1.7344E-06 | 465 | 0 | + | 1.7344E-06 | 0 | 465 | - | |||||||||
+/≈/– | 9/0/1 | 9/0/1 | 10/0/0 | 7/2/1 | 8/0/2 | 10/0/0 | 7/2/1 | 9/0/1 |
Table 8
Statistic results of HOA-S, HOA-G and HOA"
Function | HOA-S | HOA-G | HOA | |||||
Mean | SD | Mean | SD | Mean | SD | |||
5.3855E-05 | 1.4262E-04 | 8.2585E+02 | 8.1274E+01 | 0 | 0 | |||
1.4329E-03 | 1.6914E-03 | 6.3969E+01 | 3.1304E+01 | 2.9230E-194 | 0 | |||
2.0396E-03 | 1.4584E-03 | 1.0719E+00 | 1.3378E-01 | 7.1633E-04 | 0 | |||
1.3832E-13 | 7.4694E-13 | 1.3077E+02 | 6.9087E+00 | 0 | 0 | |||
5.6283E-04 | 8.1531E-04 | 1.9364E+01 | 1.4999E-01 | 8.8818E-16 | 0 | |||
1.4114E-05 | 3.6145E-05 | 8.3534E+00 | 7.3072E-01 | 0 | 0 |
Table 10
Comparison of the best solution found by various studies for the three-bar truss design problem"
Variable | HEA-ACT [ | DEDS [ | PSO-DE [ | CS [ | MBA [ | CSA [ | HOA |
0.788 68 | 0.788 675 | 0.788 675 1 | 0.788 67 | 0.788 565 0 | 0.788 675 128 4 | 0.788 675 142 372 453 | |
0.408 23 | 0.408 248 | 0.408 248 2 | 0.409 02 | 0.408 559 7 | 0.408 248 308 0 | 0.408 248 268 465 375 | |
– 0.000 000 | 1.77E-08 | – 5.29E-11 | – 0.000 29 | – 5.29E-11 | – 1.687539e-14 | 0 | |
– 1.464 118 | – 1.464 101 | – 1.463 747 5 | – 0.268 53 | – 1.463 747 5 | – 1.464 101 595 2 | – 1.464 101 640 145 903 | |
– 0.535 898 | – 0.535 898 36 | – 0.536 252 4 | – 0.731 76 | – 0.536 252 4 | – 0.535 898 404 8 | – 0.535 898 359 854 097 | |
263.895 843 | 263.895 843 4 | 263.895 843 | 263.971 6 | 263.895 852 2 | 263.895 843 376 5 | 2.638958433764684E+02 |
Table 11
Comparison of statistical results found by different approaches for the three-bar truss design problem"
Method | Worst | Mean | Best | SD | FEs |
SC [ | 263.969 756 | 263.903 356 | 263.895 846 | 1.3E-02 | 17 610 |
HEA-ACT [ | 263.896 099 | 263.895 865 | 263.895 843 | 4.9E-05 | 15 000 |
DEDS [ | 263.895 849 | 263.895 843 | 263.895 843 | 9.7E-07 | 15 000 |
PSO-DE [ | 263.895 843 | 263.895 843 | 263.895 843 | 4.5E-10 | 17 600 |
CS [ | NA | 264.066 9 | 263.971 56 | 9.00E-05 | 15 000 |
MBA [ | 263.915 983 | 263.897 996 | 263.895 852 | 3.93E-03 | 13 280 |
CSA [ | 263.895 843 377 0 | 263.895 843 376 5 | 263.895 843 376 5 | 1.0122543402E-10 | 25 000 |
HOA | 2.638958445046976E+02 | 2.638958434379900E+02 | 2.638958433764684E+02 | 2.191366322234361E-07 | 13 000 |
2.638958433767606E+02 | 2.638958433764794E+02 | 2.638958433764684E+02 | 5.319778017413415E-11 | 20 000 |
Table 12
Comparison of the best solution found by previous works for the welded beam design problem"
Variable | CPSO [ | HPSO [ | CDE [ | MBA [ | GA3 [ | CAEP[ | WCA [ | HOA |
0.202 369 | 0.205 73 | 0.203 137 | 0.205 729 | 0.205 986 | 0.205 700 | 0.205 728 | 0.205 729 639 786 079 | |
3.544 214 | 3.470 489 | 3.542 998 | 3.470 493 | 3.471 328 | 3.470 500 | 3.470 522 | 3.470 488 665 628 005 | |
9.048 210 | 9.036 624 | 9.033 498 | 9.036 626 | 9.020 224 | 9.036 600 | 9.036 620 | 9.036 623 910 357 633 | |
0.205 723 | 0.205 73 | 0.206 179 | 0.205 729 | 0.206 480 | 0.205 700 | 0.205 729 | 0.205 729 639 786 080 | |
– 13.655 547 | – 0.025 399 | – 44.578 568 | – 0.001 614 | – 0.103 049 | 1.988 676 | – 0.034128 | – 3.637978807091713E-12 | |
– 78.814 077 | – 0.053 122 | – 44.663 534 | – 0.016 911 | – 0.231 747 | 4.481 548 | – 3.49E-05 | 0 | |
– 3.35E-03 | 0 | – 0.003 042 | – 2.40E-07 | – 5E-04 | 0.000 000 | – 1.19E-06 | – 1.387778780781446E-16 | |
– 3.424 572 | – 3.432 981 | – 3.423 726 | – 3.432 982 | – 3.430 044 | – 3.433 213 | – 3.432 980 | – 3.432 983 785 362 248 | |
– 0.077 369 | – 0.080 73 | – 0.078 137 | – 0.080 729 | – 0.080 986 | – 0.080 700 | – 0.080 728 | – 0.080 729 639 786 079 | |
– 0.235 595 | – 0.235 540 | – 0.235 557 | – 0.235 540 | – 0.235 514 | – 0.235 538 | – 0.235 540 | – 0.235 540 322 584 754 | |
– 4.472 858 | – 0.031 555 | – 38.028 268 | – 0.001 464 | – 58.646 888 | – 2.603 347 | – 0.013 503 | – 2.728484105318785E-12 | |
1.728 024 | 1.724 852 | 1.733 462 | 1.724 853 | 1.728 226 | 1.724 852 | 1.724 856 | 1.724 852 308 597 365 |
Table 13
Comparison of statistical results found by different works for the welded beam design problem"
Method | Worst | Mean | Best | SD | FEs |
CPSO [ | 1.782 143 | 1.748 831 | 1.728 024 | 1.29E-02 | 240 000 |
HPSO [ | 1.814 295 | 1.749 040 | 1.724 852 | 4.01E-02 | 81 000 |
CDE [ | 1.824 105 | 1.768 158 | 1.733 461 | 0.022 194 | 204 800 |
FA [ | 2.345 579 3 | 1.878 656 0 | 1.731 206 5 | 0.267 798 9 | 50 000 |
GA3 [ | 1.993 408 | 1.792 654 | 1.728 226 | 7.47E-02 | 80 000 |
CAEP [ | 3.179 709 | 1.971 809 | 1.724 852 | 4.43E-01 | 50 020 |
WCA [ | 1.744 697 | 1.726 427 | 1.724 856 | 4.29E-03 | 46 450 |
ABC [ | NA | 1.741 913 | 1.724 852 | 0.03100 | 30 000 |
MBA [ | 1.724 853 | 1.724 853 | 1.724 853 | 6.94E-19 | 47 340 |
ISA [ | 2.670 0 | 2.497 3 | 2.381 2 | 1.02E-1 | 30 000 |
IGPSO [ | 1.724 852 | 1.724 852 | 1.724 852 | 4.76378E-09 | 120 000 |
HOA | 1.785 904 800 543 632 | 1.727 531 203 494 599 | 1.724 852 308 597 814 | 0.011 185 363 062 822 | 29 900 |
1.724 852 309 234 164 | 1.724 852 308 619 237 | 1.724 852 308 597 365 | 1.161694738829006E-10 | 100 000 |
1 | HOLLAND J. Genetic algorithms. Scientific American, 1992, 267 (1): 66- 72. |
2 | STORN R, PRICE K. Differential evolution -a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 1997, 11 (4): 341- 359. |
3 | FARASAT A, MENHAJ M B, MANSOURI T, et al. ARO: a new model-free optimization algorithm inspired from asexual reproduction. Applied Soft Computing, 2010, 10 (4): 1284- 1292. |
4 | LI W, WANG L, CAI X, et al. Species co-evolutionary algorithm: a novel evolutionary algorithm based on the ecology and environments for optimization. Neural Computing & Applications, 2015, 1- 10. |
5 | PAN J S, MENG Z, CHU S C, et al. Monkey king evolution: an enhanced ebb-tide-fish algorithm for global optimization and its application in vehicle navigation under wireless sensor network environment. Telecommunications Systems, 2017, 65 (3): 1- 14. |
6 | EBERHART R C, KENNEDY J. A new optimizer using particles swarm theory. Proc. of the 6th International Symposium on Micro Machine and Human Science, 1995: 39-43. |
7 | YANG X S, DEB S. Cuckoo search via Lévy flights. Proc. of the World Congress on Nature & Biologically Inspired Computing, 2009: 210-214. |
8 | YANG X S. Firefly algorithm, stochastic test functions and design optimization. International Journal of Bio-Inspired Computation, 2010, 2 (2): 78- 84. |
9 | YANG X S, GANDOMI A H. Bat algorithm: a novel approach for global engineering optimization. Engineering Computations, 2012, 29 (5): 464- 483. |
10 | MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer. Advances in Engineering Software, 2014, 69 (3): 46- 61. |
11 | MIRJALILI S. Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowledge-Based Systems, 2015, 89, 228- 249. |
12 | ASKARZADEH A. A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Computers & Structures, 2016, 169, 1- 12. |
13 | LI M, ZHAO H, WENG X, et al. Cognitive behavior optimization algorithm for solving optimization problems. Applied Soft Computing, 2016, 39 (C): 199- 222. |
14 | EBRAHIMI A, KHAMEHCHI E. Sperm whale algorithm: An effective metaheuristic algorithm for production optimization problems. Journal of Natural Gas Science & Engineering, 2016, 29, 211- 222. |
15 | SAREMI S, MIRJALILI S, LEWIS A. Grasshopper optimization algorithm: theory and application. Advances in Engineering Software, 2017, 105, 30- 47. |
16 | MOOSAVI S H S, BARDSIRI V K. Satin bowerbird optimizer: a new optimization algorithm to optimize ANFIS for software development effort estimation. Engineering Applications of Artificial Intelligence, 2017, 60, 1- 15. |
17 | RASHEDI E, NEZAMABADI-POUR H, SARYAZDI S. GSA: a gravitational search algorithm. Intelligent Information Management, 2009, 4 (6): 390- 395. |
18 | SHAH-HOSSEINI H. Principal components analysis by the galaxy-based search algorithm: a novel metaheuristic for continuous optimization. International Journal of Computational Science and Engineering, 2011, 6, 132- 140. |
19 | MOEIN S, LOGESWARAN R. KGMO: a swarm optimization algorithm based on the kinetic energy of gas molecules. Information Sciences, 2014, 275 (3): 127- 144. |
20 | KAVEH A, BAKHSHPOORI T. Water evaporation optimization: a novel physically inspired optimization algorithm. Computers & Structures, 2016, 167, 69- 85. |
21 | TABARI A, AHMAD A. A new optimization method: electrosearch algorithm. Computers & Chemical Engineering, 2017, 103, 1- 11. |
22 | RAO R V, SAVSANI V J, VAKHARIA D P. Teachinglearning-based optimization: an optimization method for continuous non-linear large scale problems. Information Sciences, 2012, 183 (1): 1- 15. |
23 | ZONG W G, KIM J H, LOGANATHAN G V. A new heuristic optimization algorithm: harmony search. Simulation Transactions of the Society for Modeling & Simulation International, 2001, 76 (2): 60- 68. |
24 | GANDOMI A H. Interior search algorithm (ISA): a novel approach for global optimization. ISA Transactions, 2014, 53 (4): 1168- 1183. |
25 | AHMADI S A. Human behavior-based optimization: a novel metaheuristic approach to solve complex optimization problems. Neural Computing & Applications, 2016, 1- 12. |
26 | MOUSAVIRAD S J, EBRAHIMPOUR-KOMLEH H. Human mental search: a new population-based metaheuristic optimization algorithm. Applied Intelligence, 2017, 3, 1- 38. |
27 | WOLPERT D H, MACREADY W G. No free lunch theorems for optimization. IEEE Trans. on Evolutionary Computation, 1997, 1(1): 67-82. |
28 | CLARK C J, DUDLEY R. Flight costs of long, sexually selected tails in hummingbirds. Proceedings Biological Sciences, 2009, 276 (1664): 2109. |
29 | HEALY S D, HURLY T A. Cognitive ecology: foraging in hummingbirds as a model system. Advances in the Study of Behavior, 2003, 32 (3): 325- 359. |
30 | GONZÁLEZGÓMEZ P L, VÁSQUEZ R A, BOZINOVIC F. Flexibility of foraging behavior in hummingbirds: the role of energy constraints and cognitive abilities. Auk, 2011, 128 (1): 36- 42. |
31 | EWALD P W, BRANSFIELD R J. Territory quality and territorial behavior in two sympatric species of hummingbirds. Behavioral Ecology & Sociobiology, 1987, 20 (4): 285- 293. |
32 | GONZÁLEZGÓMEZ P L, RICOTEMARTINEZ N, RAZETOBARRY P, et al. Thermoregulatory cost affects territorial behavior in hummingbirds: a model and its application. Behavioral Ecology & Sociobiology, 2011, 65 (11): 2141- 2148. |
33 | PAVLYUKEVICH I. Lévy flights, non-local search and simulated annealing. Journal of Computational Physics, 2007, 226 (2): 1830- 1844. |
34 | MANTEGNA R N. Fast, accurate algorithm for numerical simulation of Lévy stable stochastic processes. Physical Review E: Statistical Physics Plasmas Fluids & Related Interdisciplinary Topics, 1994, 49 (5): 4677- 4683. |
35 | LI M, ZHAO H, WENG X, et al. Artificial bee colony algorithm with comprehensive search mechanism for numerical optimization. Journal of Systems Engineering and Electronics, 2015, 26 (3): 603- 617. |
36 | SHI Y, EBERHART R. A modified particle swarm optimizer. Proc. of the IEEE International Conference on Evolutionary Computation, 1998: 69-73. |
37 | LI L X, SHAO Z J, QIAN J X. An optimizing method based on autonomous animals: fish-swarm algorithm. Systems Engineering -Theory & Practice, 2002, 22 (11): 32- 38. |
38 | KARABOGA D, BASTURK B. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. Journal of Global Optimization, 2007, 39, 459- 471. |
39 | MIRJALILI S. SCA: a sine cosine algorithm for solving optimization problems. Knowledge-Based Systems, 2016, 96, 120- 133. |
40 | DERRAC J, GARCÍA S, MOLINA D, et al. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm & Evolutionary Computation, 2011, 1 (1): 3- 18. |
41 | RAY T, LIEW K M. Society and civilization: an optimization algorithm based on the simulation of social behavior. IEEE Trans. on Evolutionary Computation, 2003, 7(4): 386-396. |
42 | WANG Y, CAI Z, ZHOU Y, et al. Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique. Structural & Multidisciplinary Optimization, 2009, 37 (4): 395- 413. |
43 | ZHANG M, LUO W, WANG X. Differential evolution with dynamic stochastic selection for constrained optimization. Information Sciences, 2008, 178 (15): 3043- 3074. |
44 | LIN G H, ZHANG J, LIU Z H. Hybrid particle swarm optimization with differential evolution for numerical and engineering optimization. Applied Soft Computing, 2010, 10 (2): 1- 12. |
45 | GANDOMI A H, YANG X S, ALAVI A H. Erratum to: Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Engineering with Computers, 2013, 29 (2): 245- 245. |
46 |
SADOLLAH A, BAHREININEJAD A, ESKANDAR H, et al. Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems. Applied Soft Computing, 2013, 13 (5): 2592- 2612.
doi: 10.1016/j.asoc.2012.11.026 |
47 | KROHLING R A, COELHO L D S. Coevolutionary particle swarm optimization using Gaussian distribution for solving constrained optimization problems. IEEE Trans. on Systems Man & Cybernetics Part B: Cybernetics, 2006, 36(6): 1407. |
48 | HE Q, WANG L. A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization. Applied Mathematics & Computation, 2007, 186 (2): 1407- 1422. |
49 | HUANG F, WANG L, HE Q. An effective co-evolutionary differential evolution for constrained optimization. Applied Mathematics & Computation, 2007, 186 (1): 340- 356. |
50 | GANDOMI A H, YANG X S, ALAVI A H. Mixed variable structural optimization using firefly algorithm. Computers & Structures, 2011, 89 (23/24): 2325- 2336. |
51 |
COELLO C A C. Use of a self-adaptive penalty approach for engineering optimization problems. Computers in Industry, 2000, 41 (2): 113- 127.
doi: 10.1016/S0166-3615(99)00046-9 |
52 | COELLO C A C, BECERRA R L. Efficient evolutionary optimization through the use of a cultural algorithm. Engineering Optimization, 2004, 36 (2): 219- 236. |
53 | ESKANDAR H, SADOLLAH A, BAHREININEJAD A, et al. Water cycle algorithm -a novel metaheuristic optimization method for solving constrained engineering optimization problems. Computers & Structures, 2012, 110/111 (10): 151- 166. |
54 |
AKAY B, KARABOGA D. Artificial bee colony algorithm for large-scale problems and engineering design optimization. Journal of Intelligent Manufacturing, 2012, 23 (4): 1001- 1014.
doi: 10.1007/s10845-010-0393-4 |
55 | OUYANG H B, GAO L Q, LI S, et al. Improved global-bestguided particle swarm optimization with learning operation for global optimization problems. Applied Soft Computing, 2017, 52 (C): 987- 1008. |
[1] | Hongwei LI, Jianyong LIU, Liang CHEN, Jingbo BAI, Yangyang SUN, Kai LU. Chaos-enhanced moth-flame optimization algorithm for global optimization [J]. Journal of Systems Engineering and Electronics, 2019, 30(6): 1144-1159. |
[2] | Baiquan LU, Chenlong NI, Zhongwei ZHENG, Tingzhang LIU. A global optimization algorithm based on multi-loop neural network control [J]. Journal of Systems Engineering and Electronics, 2019, 30(5): 1007-1024. |
[3] | Aijun Zhu, Chuanpei Xu, Zhi Li, JunWu, and Zhenbing Liu. Hybridizing grey wolf optimization with differential evolution for global optimization and test scheduling for 3D stacked SoC [J]. Journal of Systems Engineering and Electronics, 2015, 26(2): 317-328. |
[4] | Yu Xue,Yi Zhuang, Tianquan Ni, Siru Ni, and Xuezhi Wen. Self-adaptive learning based discrete differential evolution algorithm for solving CJWTA problem [J]. Journal of Systems Engineering and Electronics, 2014, 25(1): 59-68. |
[5] | Yong Liu and Liang Ma. Improved gravitational search algorithm based on free search differential evolution [J]. Journal of Systems Engineering and Electronics, 2013, 24(4): 690-698. |
[6] | Chaohua Dai1,Weirong Chen1,Yonghua Song2,and Yunfang Zhu3. Seeker optimization algorithm:a novel stochastic search algorithm for global numerical optimization [J]. Journal of Systems Engineering and Electronics, 2010, 21(2): 300-311. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||