Journal of Systems Engineering and Electronics ›› 2018, Vol. 29 ›› Issue (2): 415-428.doi: 10.21629/JSEE.2018.02.21
• Software Algorithm and Simulation • Previous Articles Next Articles
Dongsheng YANG1,2(), Shaohai HU1,2,*(), Shuaiqi LIU3(), Xiaole MA1,2(), Yuchao SUN4()
Received:
2017-04-05
Online:
2018-04-26
Published:
2018-04-27
Contact:
Shaohai HU
E-mail:dsyang@bjtu.edu.cn;shhu@bjtu.edu.cn;shdkj-1918@163.com;maxiaole@bjtu.edu.cn;13120337@bjtu.edu.cn
About author:
YANG Dongsheng was born in 1991. He received his B.S. degree in computer science at the School of Computer and Information Technology, Beijing Jiaotong University in 2014. At present, he is pursuing his M.S. degree in information and signal processing at the Institute of Information Science, Beijing Jiaotong University. Currently, his research interests include image fusion, and image denoising. E-mail: Supported by:
Dongsheng YANG, Shaohai HU, Shuaiqi LIU, Xiaole MA, Yuchao SUN. Multi-focus image fusion based on block matching in 3D transform domain[J]. Journal of Systems Engineering and Electronics, 2018, 29(2): 415-428.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Objective criteria comparison of different fusion algo-rithms with different transforms on source image "Lab""
Fusion | Objective criteria | |||||
method | EN | STD | AVG | MI | SSIM | |
BMDCT | 7.028 1 | 46.794 1 | 3.070 6 | 5.423 4 | 0.469 6 | 0.856 3 |
BMDWT | 7.039 9 | 47.310 8 | 3.707 0 | 7.089 9 | 0.718 9 | 0.895 8 |
BMNSCT | 7.068 7 | 48.097 7 | 3.774 1 | 7.196 4 | 0.720 3 | 0.894 0 |
BMNSST | 7.070 1 | 48.242 5 | 3.767 8 | 7.207 6 | 0.729 2 | 0.892 8 |
Table 2
Objective criteria comparison of different transform do-main fusion algorithms on source image "Pepsi""
Fusion | Objective criteria | |||||
method | EN | STD | AVG | MI | SSIM | |
DWT-MAX | 7.102 1 | 44.908 7 | 4.088 9 | 6.432 2 | 0.710 0 | 0.894 5 |
NSCT-MAX | 7.095 6 | 44.926 2 | 4.061 2 | 6.823 6 | 0.770 7 | 0.906 7 |
NSST-MAX | 7.099 1 | 44.917 6 | 4.087 3 | 6.758 3 | 0.762 4 | 0.905 3 |
BMDWT-CMIS | 7.103 3 | 45.105 6 | 4.081 4 | 6.625 3 | 0.757 5 | 0.902 4 |
BMNSCT-CMIS | 7.105 2 | 45.252 1 | 4.201 3 | 6.861 4 | 0.759 6 | 0.908 6 |
BMNSST-CMIS | 7.106 8 | 45.380 3 | 4.132 4 | 6.903 5 | 0.778 3 | 0.903 9 |
Table 3
Objective criteria comparison of different transform do-main fusion algorithms on source image "Clock""
Fusion | Objective criteria | |||||
method | EN | STD | AVG | MI | SSIM | |
DWT-MAX | 7.034 4 | 40.367 4 | 2.886 7 | 6.414 6 | 0.612 6 | 0.898 2 |
NSCT-MAX | 7.044 8 | 40.921 7 | 2.881 7 | 6.738 7 | 0.676 6 | 0.908 5 |
NSST-MAX | 7.048 1 | 40.808 8 | 2.747 4 | 6.496 1 | 0.601 1 | 0.860 1 |
BMDWT-CMIS | 7.058 4 | 40.347 8 | 2.756 3 | 6.653 9 | 0.646 7 | 0.899 2 |
BMNSCT-CMIS | 7.080 5 | 41.029 7 | 2.907 1 | 6.721 8 | 0.685 3 | 0.909 0 |
BMNSST-CMIS | 7.087 2 | 41.064 8 | 2.889 1 | 6.934 4 | 0.689 4 | 0.903 3 |
1 | HAGHIGHAT M B A, AGHAGOLZADEH A, SEYEDARABI H. Multi-focus image fusion for visual sensor networks in DCT domain. Computers & Electrical Engineering, 2011, 37 (5): 789- 797. |
2 | ZHANG Z, BLUM R S. A categorization of multiscaledecomposition-based image fusion schemes with a performance study for a digital camera application. Proceedings of the IEEE, 1999, 87 (2): 1315- 1326. |
3 | PAJARES G, CRUZ J M D L. A wavelet-based image fusion tutorial. Pattern Recognition, 2004, 37 (9): 1855- 1872. |
4 | CANDES E J. Ridgelets: theory and applications. Stanford, USA: Stanford University, 1998. |
5 | COHEN R A, SCHUMAKAR L L. Curves and surfaces. Nashville: Vanderbilt University Press, 2000. |
6 | DO M N, VETTERLI M. The Contourlet transform: an efficient directional multi-resolution image representation. IEEE Trans. on Image Processing, 2005, 14(12): 2091-2106. |
7 | ZHANG Q, GUO B L. Multifocus image fusion using the nonsubsampled contourlet transform. Signal Processing, 2009, 89 (7): 1334- 1346. |
8 | WANG J, PENG J Y, FENG X Y, et al. Image fusion with nonsubsampled contourlet transform and sparse representation. Journal of Electronic Imaging, 2013, 22 (4): 043019. |
9 | GUO K, LABATE D. Optimally sparse multidimensional representation using shearlets. SIAM Journal on Mathematical Analysis, 2007, 39 (1): 298- 318. |
10 | NUNEZ J, OTAZU X, FORS O, et al. Multiresolution-based image fusion with additive wavelet decomposition. IEEE Trans. on Geoscience and Remote Sensing, 2002, 37(3): 1204-1211. |
11 | GENG P, WANG Z Y, ZHANG Z G, et al. Image fusion by pulse couple neural network with shearlet. Optical Engineering, 2010, 51 (6): 067005- 1. |
12 | DABOV K, FOI A, KATKOVNIK V, et al. Image denoising with block-matching and 3D filtering. Proc. of SPIE-IS & T Electronic Imaging: Algorithms and Systems V, 2006, 6064: 606414-1-606414-12. |
13 | DABOV K, FOI A, KATKOVNIK V, et al. Image denosing by sparse 3D transform-domain collaborative filtering. IEEE Trans. on Image Processing, 2007, 16(8): 2080-2095. |
14 | TIAN J, CHEN J, ZHANG C. Multispectral image fusion based on fractal features. Proceedings of SPIE, 2004, 5308, 824- 832. |
15 | BHATNAGAR G, WU Q M J, LIU Z. Directive contrast based multimodal medical image fusion in NSCT domain. IEEE Trans. on Multimedia, 2013, 15(5): 1014-1024. |
16 | KUMAR M, DASS S. A total variation-based algorithm for pixel-level image fusion. IEEE Trans. on Image Processing, 2009, 18(9): 2137-2143. |
17 | BUADES A, COLL B, MOREL J M. A review of image denoising algorithms, with a new one. SIAM Journal on Multiscale Modeling and Simulation, 2005, 4 (2): 490- 530. |
18 | DO M N, VETTERLI M. Wavelet-based texture retrieval using generalized Gaussian density and Kullback-Leibler distance. IEEE Trans. on Image Processing, 2002, 11(2): 146-158. |
19 | MACQUEEN J B. Some methods for classification and analysis of multivariate observations. Proc. of the 5th Berkeley Symposium on Mathematical Statistics and Probability, 1967: 281-297. |
20 | HÖPPNER F, KLAWONN F, KRUSE R, et al. Fuzzy cluster analysis. Chichester: Wiley, 1999. |
21 | GERSHO A. On the structure of vector quantizers. IEEE Trans. on Information Theory, 1982, 28(2): 157-166. |
22 | JIANG P, ZHANG Q, LI J, et al. Fusion algorithm for infrared and visible image based on NSST and adaptive PCNN. Laser and Infrared, 2014, 44 (1): 108- 112. |
23 | GULERYUZ O. Weighted overcomplete denoising. Proc. of the 7th Asilomar Conference on Signals, Systems and Computers, 2003, 2: 1992-1996. |
24 | LIU S, ZHU Z, LI H, et al. Multi-focus image fusion using self-similarity and depth information in nonsubsampled shearlet transform domain. International Journal of Signal Processing, Image Processing and Pattern Recognition, 2016, 9 (1): 347- 360. |
25 | QU G H, ZHANG D L, YAN P F. Information measure for performance of image fusion. Electronic Letters, 2002, 38 (7): 313- 315. |
26 | XYDEAS C S, PETROVI V. Objective image fusion performance measure. Electronics Letters, 2000, 36 (4): 308- 309. |
27 | WANG Z, BOVIK A C, SHEIK H R, et al. Image quality assessment: from error visibility to structural similarity. IEEE Trans. on Image Processing, 2004, 13(4): 600-612. |
28 | MIAO Q G, SHI C, XU P F, et al. Multi-focus image fusion algorithm based on shearlets. Chinese Optics Letters, 2011, 9 (4): 25- 29. |
[1] | Jian WANG, Chunxia QIN, Xiufei ZHANG, Ke YANG, Ping REN. A multi-source image fusion algorithm based on gradient regularized convolution sparse representation [J]. Journal of Systems Engineering and Electronics, 2020, 31(3): 447-459. |
[2] | Jian WANG, Ke YANG, Ping REN, Chunxia QIN, Xiufei ZHANG. Multi-source image fusion algorithm based on fast weighted guided filter [J]. Journal of Systems Engineering and Electronics, 2019, 30(5): 831-840. |
[3] | Kun Liu1, Lei Guo, and Jingsong Chen. Contourlet transform for image fusion using cycle spinning [J]. Journal of Systems Engineering and Electronics, 2011, 22(2): 353-357. |
[4] | Tao Tangfei, Ja Choon Koo & Hyouk Ryeol Choi. Improved block matching approach to fast disparity estimation? [J]. Journal of Systems Engineering and Electronics, 2009, 20(6): 1278-1285. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||