Journal of Systems Engineering and Electronics ›› 2018, Vol. 29 ›› Issue (3): 519-529.doi: 10.21629/JSEE.2018.03.09
• Systems Engineering • Previous Articles Next Articles
Zhanwu LI1(), Yizhe CHANG2,*(), Yingxin KOU2(), Haiyan YANG2(), An XU2(), You LI2()
Received:
2016-12-30
Online:
2018-06-28
Published:
2018-07-02
Contact:
Yizhe CHANG
E-mail:afeulzw@189.cn;mastercyz@163.com;afcekyx@hotmail.com;yanghy07@yeah.net;aspire2010@sohu.com;reason891020@qq.com
About author:
LI Zhanwu was born in 1978. He received his B.S. and M.S. degree in fire control engineering from Air Force Engineering University in 2000 and 2007, respectively. Now he is a Ph.D. candidate in Northwestern Polytechnical University. His research interests include aviation fire control theory and system engineering. E-mail: Supported by:
Zhanwu LI, Yizhe CHANG, Yingxin KOU, Haiyan YANG, An XU, You LI. Approach to WTA in air combat using IAFSA-IHS algorithm[J]. Journal of Systems Engineering and Electronics, 2018, 29(3): 519-529.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Parameter settings for each algorithm"
Algorithm | Parameter |
GA | Population |
PSO | Particle swarm |
ACO | Ant swarm |
SA | |
AFSA | Fish swarm |
HS | |
IBAFSA | Fish swarm |
GDHS | |
IABHS | |
IAFSA-IHS | |
Table 2
Kill probability of missiles to targets while $\mathit{\boldsymbol{P_J = 0.1}}$ "
0.914 7 | 0.905 7 | 0.126 9 | 0.913 3 | 0.632 3 | 0.097 5 | 0.278 4 | 0.546 8 | |||||
0.957 5 | 0.964 8 | 0.157 6 | 0.9705 | 0.957 1 | 0.485 3 | 0.800 2 | 0.141 8 | |||||
0.421 7 | 0.915 7 | 0.902 2 | 0.959 4 | 0.655 7 | 0.035 7 | 0.849 1 | 0.933 9 | |||||
0.678 7 | 0.757 7 | 0.743 1 | 0.392 2 | 0.655 4 | 0.171 1 | 0.706 0 | 0.831 8 | |||||
0.276 9 | 0.046 1 | 0.097 1 | 0.823 4 | 0.694 8 | 0.317 0 | 0.950 2 | 0.034 4 | |||||
0.438 7 | 0.981 5 | 0.765 5 | 0.795 1 | 0.186 8 | 0.509 7 | 0.445 5 | 0.646 3 |
Table 3
Comparison of tested algorithms while $\mathit{\boldsymbol{P_J = 0.1}}$ }"
Algorithm | Fitness | Probability of | Cost | ||||||||||||||
value | target survivability | ||||||||||||||||
IAFSA-IHS | 0.215 4 | 0.336 | 6 | 2.368 7 | |||||||||||||
GDHS | 0 | 0.247 4 | 0.326 2 | 5 | 2.966 3 | ||||||||||||
IABHS | | 0 | 0.326 7 | 0.470 6 | 5 | 2.522 4 | |||||||||||
IBAFSA | 0 | 0.257 1 | 0.353 3 | 5 | 3.001 6 | ||||||||||||
AFSA | 0 | 0.711 7 | 0.935 9 | 5 | 3.539 1 | ||||||||||||
HS | 0 | 0.568 5 | 0.757 9 | 5.4 | 4.039 1 | ||||||||||||
GA | 0 | 1.584 5 | 1.6672 | 5.4 | 4.437 8 | ||||||||||||
ACO | 0.910 8 | 1.1123 | 6 | 4.189 | |||||||||||||
PSO | 1.132 2 | 1.3880 | 6 | 3.658 4 | |||||||||||||
SA | 0.924 8 | 1.1315 | 6 | 4.672 2 |
Table 4
Remaining threat value of targets while $\mathit{\boldsymbol{P_J = 0.1}}$"
Algorithm | ||||||
IAFSA-IH | 0.086 7 | 0.042 5 | 0.066 1 | 0.088 5 | 0.034 | 0.018 5 |
GDHS | 0.086 7 | 0.042 9 | 0.097 8 | 0.030 5 | 0.049 8 | 0.018 5 |
IABHS | 0.085 3 | 0.042 9 | 0.097 8 | 0.049 5 | 0.176 6 | 0.018 5 |
IBAFSA | 0.086 7 | 0.042 5 | 0.097 8 | 0.058 | 0.049 8 | 0.018 5 |
AFSA | 0.085 3 | 0.035 2 | 0.150 9 | 0.256 9 | 0.053 9 | 0.353 7 |
HS | 0.086 7 | 0.035 2 | 0.066 1 | 0.285 6 | 0.049 8 | 0.234 5 |
GA | 0.085 3 | 0.035 2 | 0.964 3 | 0.294 0 | 0.053 9 | 0.234 5 |
ACO | 0.082 3 | 0.029 5 | 0.150 9 | 0.054 0 | 0.305 2 | 0.490 3 |
PSO | 0.068 0 | 0.514 7 | 0.038 2 | 0.256 9 | 0.305 2 | 0.204 9 |
SA | 0.068 0 | 0.029 5 | 0.066 1 | 0.256 9 | 0.220 7 | 0.490 3 |
Table 5
Comparison of tested algorithms while $\mathit{\boldsymbol{P_J = 0.2}}$"
Algorithm | Fitness | Probability of | Cost | ||||||||||||||
| value | target survivability | |||||||||||||||
IAFSA-IHS | 0 | 0.393 5 | 0.525 2 | 5.4 | 03479 6 | ||||||||||||
GDHS | 0 | 0.433 6 | 0.610 1 | 5.4 | 0.671 4 | ||||||||||||
IABHS | 0 | 0.532 2 | 0.756 1 | 5 | 0.762 3 | ||||||||||||
IBAFSA | 0 | 0 | 0.445 8 | 0.642 4 | 4 | 0.869 9 | |||||||||||
AFSA | 0 | 0.586 4 | 0.781 3 | 5 | 1.124 4 | ||||||||||||
HS | 0 | 0.604 1 | 0.941 7 | 5 | 1.375 1 | ||||||||||||
GA | 1.263 3 | 1.762 4 | 6 | 1.967 | |||||||||||||
ACO | 0 | 0 | | 0.713 8 | 1.156 5 | 4.4 | 1.996 3 | ||||||||||
PSO | 0 | 1.024 4 | 1.642 1 | 5 | 1.035 | ||||||||||||
SA | 0 | | 1.869 8 | 2.554 8 | 5 | 2.061 4 |
Table 6
Remaining threat value of targets while $\mathit{\boldsymbol{P_J = 0.2}}$"
Algorithm | ||||||
IAFSA-IH | 0.085 3 | 0.035 2 | 0.040 6 | 0.168 2 | 0.049 8 | 0.146 1 |
GDHS | 0.086 7 | 0.035 2 | 0.097 8 | 0.181 3 | 0.049 8 | 0.159 3 |
IABHS | 0.085 3 | 0.042 9 | 0.084 3 | 0.168 2 | 0.176 6 | 0.198 8 |
IBAFSA | 0.085 3 | 0.042 9 | 0.150 9 | 0.168 2 | 0.176 6 | 0.018 5 |
AFSA | 0.085 3 | 0.015 2 | 0.066 1 | 0.294 0 | 0.305 2 | 0.015 5 |
HS | 0.094 3 | 0.042 5 | 0.097 8 | 0.344 6 | 0.008 8 | 0.353 7 |
GA | 0.082 3 | 0.514 7 | 0.578 3 | 0.168 2 | 0.305 2 | 0.113 6 |
ACO | 0.367 7 | 0.514 7 | 0.040 6 | 0.168 2 | 0.049 8 | 0.015 5 |
PSO | 0.085 3 | 0.035 2 | 0.097 8 | 0.344 6 | 0.965 6 | 0.113 6 |
SA | 0.085 3 | 0.842 4 | 0.344 3 | 0.607 8 | 0.659 5 | 0.015 5 |
Table 7
Kill probability of missiles to targets in large scale air combat"
| ||||||||||||||||||
0.927 4 | 0.7593 | 0.437 2 | 0.790 1 | 0.516 1 | 0.322 9 | 0.786 1 | 0.878 6 | 0.961 7 | 0.778 4 | 0.989 4 | 0.345 9 | |||||||
| 0.647 0 | 0.865 6 | 0.735 7 | 0.711 6 | 0.996 2 | 0.341 4 | 0.743 1 | 0.524 5 | 0.924 5 | 0.505 9 | 0.330 1 | 0.542 2 | ||||||
0.880 2 | 0.762 9 | 0.612 6 | 0.907 5 | 0.648 9 | 0.870 7 | 0.634 4 | 0.589 9 | 0.669 8 | 0.658 3 | 0.931 6 | 0.582 8 | |||||||
0.762 9 | 0.262 1 | 0.887 7 | 0.372 | 0.397 6 | 0.380 7 | 0.273 7 | 0.492 9 | 0.234 2 | 0.273 1 | 0.930 7 | 0.499 9 | |||||||
0.382 1 | 0.654 5 | 0.315 7 | 0.919 5 | 0.404 5 | 0.361 7 | 0.577 | 0.400 1 | 0.468 5 | 0.466 3 | 0.735 5 | 0.819 1 | |||||||
0.717 9 | 0.330 0 | 0.465 7 | 0.988 2 | 0.995 1 | 0.266 9 | 0.648 5 | 0.237 4 | 0.324 7 | 0.510 1 | 0.209 6 | 0.377 3 | |||||||
0.292 4 | 0.725 1 | 0.947 9 | 0.556 1 | 0.376 6 | 0.251 0 | 0.990 0 | 0.594 4 | 0.399 3 | 0.985 9 | 0.417 4 | 0.262 6 | |||||||
0.645 4 | 0.878 4 | 0.645 3 | 0.603 0 | 0.572 5 | 0.903 3 | 0.601 9 | 0.590 1 | 0.314 4 | 0.364 5 | 0.365 8 | 0.282 7 | |||||||
0.578 7 | 0.904 4 | 0.946 7 | 0.261 4 | 0.747 4 | 0.481 8 | 0.372 3 | 0.817 4 | 0.279 7 | 0.357 9 | 0.446 5 | 0.844 4 | |||||||
0.821 7 | 0.931 6 | 0.674 9 | 0.475 9 | 0.835 3 | 0.385 7 | 0.704 6 | 0.860 7 | 0.618 4 | 0.422 5 | 0.769 7 | 0.316 3 |
Table 8
Comparison of tested algorithms in large scale air combat"
Algorithm | Fitness | Probability of | Cost | ||||||||||||||||||||
| value | target survivability | |||||||||||||||||||||
IAFSA-IHS | 0 | 0 | 0.697 8 | 0.792 0 | 8.8 | 3.217 4 | |||||||||||||||||
GDHS | 0 | 0 | 0.734 0 | 0.846 9 | 8.6 | 4.033 | |||||||||||||||||
IABHS | 0 | 0.716 4 | 0.853 3 | 9.4 | 3.857 6 | ||||||||||||||||||
IBAFSA | 2.246 1 | 2.528 4 | 10.4 | 815 9 | |||||||||||||||||||
AFSA | 2.345 9 | 2.644 | 10.4 | 4.157 2 | |||||||||||||||||||
HS | 2.222 3 | 2.463 7 | 10.4 | 4.038 2 | |||||||||||||||||||
GA | 3.583 6 | 4.113 4 | 10.4 | 4.395 4 | |||||||||||||||||||
ACO | 2.902 1 | 3.609 4 | 10.4 | 3.935 5 | |||||||||||||||||||
PSO | 2.576 3 | 2.588 7 | 10.4 | 4.168 4 | |||||||||||||||||||
SA | | 2.486 0 | 2.882 2 | 10.4 | 4.507 7 |
Table 9
Remaining threat value of targets in large scale air combat "
Algorithm | ||||||||||
IAFSA-IH | 0.677 1 | 0.003 8 | 0.387 4 | 0.726`3 | 0.163 4 | 0.011 8 | 0.737 4 | 0.635 5 | 0.720 3 | 0.009 5 |
GDHS | 0.038 3 | 0.134 4 | 0.119 8 | 0.069 3 | 0.180 9 | 0.004 9 | 0.01 | 0.096 7 | 0.053 3 | 0.139 3 |
IABHS | 0.038 3 | 0.003 8 | 0.119 8 | 0.112 3 | 0.180 9 | 0.011 8 | 0.014 1 | 0.121 6 | 0.182 6 | 0.068 0 |
IBAFSA | 0.121 4 | 0.047 5 | 0.068 4 | 0.500 1 | 0.051 4 | 0.489 9 | 0.010 0 | 0.354 7 | 0.720 3 | 0.164 7 |
AFSA | 0.010 6 | 0.475 5 | 0.129 3 | 0.500 1 | 0.533 7 | 0.351 5 | 0.052 1 | 0.397 0 | 0.182 0 | 0.012 2 |
HS | 0.010 6 | 0.457 8 | 0.351 1 | 0.619 3 | 0.042 8 | 0.215 1 | 0.010 0 | 0.635 5 | 0.053 3 | 0.068 4 |
GA | 0.051 5 | 0.475 5 | 0.341 7 | 0.237 1 | 0.339 3 | 0.534 3 | 0.737 4 | 0.427 5 | 0.738 6 | 0.230 3 |
ACO | 0.213 9 | 0.353 0 | 0.237 1 | 0.368 6 | 0.684 3 | 0.004 9 | 0.600 7 | 0.069 4 | 0.553 5 | 0.524 1 |
PSO | 0.010 6 | 0.117 6 | 0.129 3 | 0.765 8 | 0.684 3 | 0.004 9 | 0.010 0 | 0.354 7 | 0.311 2 | 0.577 5 |
SA | 0.677 1 | 0.457 8 | 0.091 8 | 0.237 1 | 0.080 5 | 0.533 8 | 0.014 1 | 0.398 1 | 0.252 6 | 0.139 3 |
1 | LLOYD S P, WITSENHAUSEN H S. Weapon allocation is NP-complete. Proc. of the Summer Simulation Conference, 1986: 1054-1058. |
2 | LEE Z J, SU S F, LEE C Y. Efficiently solving general weapontarget assignment problem by genetic algorithms with greedy eugenics. IEEE Trans. on Systems, Man and Cybernetics, Part B, 2003, 33(1): 113-121. |
3 | BURKARD R E, RENDL F A. A thermodynamically motivated simulation procedure for combinatorial optimization problems. European Journal of Operational Research, 1984, 17 (2): 169- 174. |
4 | ZENG X, ZHU Y, NAN L, et al. Solving weapon-target assignment problem using discrete particle swarm optimization. Proc of the Intelligent Control and Automation Conference, 2006, 3562- 3565. |
5 | XIN B, CHEN J, ZHANG J, et al. Efficient decision making for dynamic weapon-target assignment by virtual permutation and tabu search heuristics. IEEE Trans. on Systems, Man and Cybernetics, Part C, 2010, 40(6): 649-662. |
6 | LEE Z J, LEE C Y. A hybrid search algorithm with heuristics for resource allocation problem. Information Sciences, 2005, 173 (3): 155- 167. |
7 |
KARABOGA D, GORKEMLI B. A quick artificial bee colony algorithm and its performance on optimization problems. Applied Soft Computing, 2014, 23, 227- 238.
doi: 10.1016/j.asoc.2014.06.035 |
8 | QU H, WANG L, LIU R. A constrastive study of the stochastic location-inventor problem with joint replenishment and independent replenishment. Expert Systems with Applications, 2015, 42 (4): 2061- 2072. |
9 | WANG S, DA X Y, LI M D. Adaptive backtracking search optimization algorithm with pattern search for numerical optimization. Journal of Systems Engineering and Electronics, 2016, 27 (2): 395- 406. |
10 |
AHUJA R K, KUMAR A, JHA K, et al. Exact and heuristic algorithms for the weapon-target assignment problem. Operations Research, 2007, 55 (6): 1136- 1146.
doi: 10.1287/opre.1070.0440 |
11 | SUJIT P B, BEARD R. Multiple MAV task allocation using distributed auctions. Proc of the AIAA Guidance, Navigation, and Control Conference and Exhibit, 2007: AIAA-2007-6452. |
12 | SUJIT P B, BEARD R. Distributed sequential auctions for multiple UAV task allocation. Proc. of the American Control Conference, 2007: 3955-3960. |
13 | DANY D, CAMILLE A R. Multi-UAV decentralized task allocation with intermittent communications: the DTC algorithm. Proc. of the American Control Conference, 2009: 5406-5411. |
14 |
CAI H, LIU J, CHEN Y, et al. Survey of the research on dynamic weapon-target assignment problem. Journal of Systems Engineering and Electronics, 2006, 17 (3): 559- 565.
doi: 10.1016/S1004-4132(06)60097-2 |
15 | LI X L, SHAO Z J, QIAN J X. An optimizing method based on autonomous animate: fish swarm algorithm. System Engineering Theory and Practice, 2002, 22 (11): 32- 38. |
16 | MA J W, ZHANG G L, XIE H. Optimization of feed-forward neural networks based on artificial fish-swarm algorithm. Journal of Computer Applications, 2004, 24 (10): 21- 23. |
17 | HUANG G Q, LU Q Q. An approach to air leakage points identification in branches of ventilation system based on fishswarm algorithm. Journal of System Simulation, 2007, 19 (12): 2677- 2682. |
18 | JIANG M Y, WANG Y. Spread spectrum code estimation by artificial Fish swarm algorithm. Proc. of the IEEE International Symposium on Intelligent Signal Processing, 2007: 1-6. |
19 | GEEM Z W, KIM J H, LOGANATHAN G V. A new heuristic optimization algorithm: harmony search. Simulations, 2001, 76 (2): 60- 68. |
20 | MANNE A S. A target-assignment problem. Operations Research, 1958, 6 (3): 346- 351. |
21 | ECKLER A R, BURR S A. Mathematical models of target coverage and missile allocation. Alexandria, VA: Military Operations Research Society, 1972. |
22 |
KARASAKAL O, OZDEMIREL N E, KANDILLER L. Antiship missile defence of a naval task group. Naval Research Logistics, 2011, 58 (3): 304- 321.
doi: 10.1002/nav.20457 |
23 | MURPHEY R A. Target-based weapon target assignment problems. PARDALOS P M, PITSOULIS L S, ed. Nonlinear assignment problems: algorithm and application. Boston, MA: Springer, 2000: 39- 53. |
24 | ROUX J N, VAN VUUREN J H. Threat evaluation and weapon assignment decision support: a review of the state of the art. ORiON, 2007, 23 (2): 151- 187. |
25 | DAY R H. Allocating weapons to target complexes by means of non-linear programming. Operations Research, 1966, 26 (14): 992- 1013. |
26 | BAYRAK A E, POLAT F. Employment of an evolutionary heuristic to solve the target allocation problem efficiently. Information Sciences, 2013, 22 (2): 675- 695. |
27 |
AZAD M A K, ROCHA A M A C. Improved binary artificial fish swarm algorithm for the 0-1 multidimensional knapsack problems. Swarm and Evolutionary Computation, 2014, 14, 66- 75.
doi: 10.1016/j.swevo.2013.09.002 |
28 |
KHALILI M, KHARRAT R, SALAHSHOOR K, et al. Global dynamic harmony search algorithm: GDHS. Applied Mathematics and Computation, 2014, 228, 195- 219.
doi: 10.1016/j.amc.2013.11.058 |
29 |
WANG L, YANG R X, XU Y, et al. An improved adaptive binary harmony search algorithm. Information Sciences, 2013, 232, 58- 87.
doi: 10.1016/j.ins.2012.12.043 |
30 |
ZONG W G, SIM K B. Parameter-setting-free harmony search algorithm. Applied Mathematics and Computation, 2010, 217 (8): 3881- 3889.
doi: 10.1016/j.amc.2010.09.049 |
[1] | Jiandong ZHANG, Qiming YANG, Guoqing SHI, Yi LU, Yong WU. UAV cooperative air combat maneuver decision based on multi-agent reinforcement learning [J]. Journal of Systems Engineering and Electronics, 2021, 32(6): 1421-1438. |
[2] | Jian'gang PENG, Mingzhou LIU, Xi ZHANG, Lin LING. Hybrid heuristic algorithm for multi-objective scheduling problem [J]. Journal of Systems Engineering and Electronics, 2019, 30(2): 327-342. |
[3] | Qiuni LI, Rennong YANG, Chao FENG, Zongcheng LIU. Approach for air-to-air confrontment based on uncertain interval information conditions [J]. Journal of Systems Engineering and Electronics, 2019, 30(1): 100-109. |
[4] | Ximeng XU, Rennong YANG, Ying FU. Situation assessment for air combat based on novel semi-supervised naive Bayes [J]. Journal of Systems Engineering and Electronics, 2018, 29(4): 768-779. |
[5] | Changqiang HUANG, Kangsheng DONG, Hanqiao HUANG, Shangqin TANG, Zhuoran ZHANG. Autonomous air combat maneuver decision using Bayesian inference and moving horizon optimization [J]. Journal of Systems Engineering and Electronics, 2018, 29(1): 86-97. |
[6] | Chengwei Ruan, Zhongliang Zhou, Hongqiang Liu, and Haiyan Yang. Task assignment under constraint of timing sequential for cooperative air combat [J]. Systems Engineering and Electronics, 2016, 27(4): 836-. |
[7] | Wang Yanxia, Qian Longjun, Guo Zhi & Ma Lifeng. Weapon target assignment problem satisfying expected damage probabilities based on ant colony algorithm [J]. Journal of Systems Engineering and Electronics, 2008, 19(5): 939-944. |
[8] | Zhong Lin, Tong Ming'an, Zhong Wei & Zhang Shengyun. Sequential maneuvering decisions based on multi-stage influence diagram in air combat [J]. Journal of Systems Engineering and Electronics, 2007, 18(3): 551-555. |
[9] | Shi Zhifu , Zhang An & Wang Anli. Target distribution in cooperative combat based on Bayesian optimization algorithm* [J]. Journal of Systems Engineering and Electronics, 2006, 17(2): 339-342. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||