Journal of Systems Engineering and Electronics ›› 2019, Vol. 30 ›› Issue (5): 985-994.doi: 10.21629/JSEE.2019.05.15
• Control Theory and Application • Previous Articles Next Articles
Xuan PENG1,*(), Xiaoping SHI1(), Yupeng GONG2()
Received:
2019-02-18
Online:
2019-10-08
Published:
2019-10-09
Contact:
Xuan PENG
E-mail:18745047873@163.com;sxp@hit.edu.cn;GTYPHIT@163.com
About author:
PENG Xuan was born in 1993. She received her B.S. degree in automation from Harbin Institute of Technology in 2016. She is currently a Ph.D. candidate in Harbin Institute of Technology. Her research interests are dual quaternion, attitude and orbit coupled control of spacecraft. E-mail: Supported by:
Xuan PENG, Xiaoping SHI, Yupeng GONG. Dual-quaternion-based modeling and control for motion tracking of a tumbling target[J]. Journal of Systems Engineering and Electronics, 2019, 30(5): 985-994.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 |
SHAN M H, GUO J, GILL E. Review and comparison of active space debris capturing and removal methods. Progress in Aerospace Sciences, 2016, 80, 18- 32.
doi: 10.1016/j.paerosci.2015.11.001 |
2 |
ABAD A F, MA O, PHAM K, et al. A review of space robotics technologies for on-orbit servicing. Progress in Aerospace Sciences, 2014, 68, 1- 26.
doi: 10.1016/j.paerosci.2014.03.002 |
3 |
GOMEZ N O, WALKER S J I. Earth's gravity gradient and eddy currents effects on the rotational dynamics of space debris objects:envisat case study. Advances in Space Research, 2015, 56 (3): 494- 508.
doi: 10.1016/j.asr.2014.12.031 |
4 | PRALY N, HILLION M, BONNAL J, et al. Study on the eddy current damping of the spin dynamics of space debris from the Ariane launcher upper stages. Acta Astronautica, 2012, 76 (4): 145- 153. |
5 |
GURFIL P. Relative motion between elliptic orbits:generalized boundedness conditions and optimal formation keeping. Journal of Guidance, Control, and Dynamics, 2005, 28 (4): 761- 767.
doi: 10.2514/1.9439 |
6 |
SABOL C, BURNS R, MCLAUGHLIN C A. Satellite formation flying design and evolution. Journal of Spacecraft and Rockets, 2001, 38 (2): 270- 278.
doi: 10.2514/2.3681 |
7 | MISHNE D. Formation control of satellites subject to drag variations and J2 perturbations. Journal of Guidance, Control, and Dynamics, 2004, 27 (4): 685- 692. |
8 | SEGAL S, GURFIL P. Effect of kinematic rotation-translation coupling on relative spacecraft translational dynamics. Journal of Guidance, Control, and Dynamics, 2009, 32 (3): 1045- 1050. |
9 |
LI Q, YUAN J P, ZHANG B, et al. Model predictive control for autonomous rendezvous and docking with a tumbling target. Aerospace Science and Technology, 2017, 69, 700- 711.
doi: 10.1016/j.ast.2017.07.022 |
10 |
JIANG B Y, HU Q L, FISHWELL M I. Fixed-time rendezvous control of spacecraft with a tumbling target under loss of actuator effectiveness. IEEE Trans. on Aerospace and Electronic Systems, 2016, 52 (4): 1576- 1586.
doi: 10.1109/TAES.2016.140406 |
11 | WANG X L, ZHOU Z C, HU G J. Global fast terminal sliding mode control of space manipulator for capturing a tumbling satellite. Proc. of the 2nd IEEE Advanced Information Technology Electronic and Automation Control Conference, 2017: 553-558. |
12 |
CHEN B L, GENG Y H. Super twisting controller for on-orbit servicing to noncooperative target. Chinese Journal of Aeronautics, 2015, 28 (1): 285- 293.
doi: 10.1016/j.cja.2014.12.030 |
13 | ZHANG D Y, LUO J J, GAO D W, et al. A novel nonlinear control for tracking and rendezvous with a rotating noncooperative target with translational maneuver. Acta Astronautica, 2017, 138, 279- 289. |
14 |
FUNDA J, RICHARD P P. A computational analysis of screw transformations in robotics. IEEE Trans. on Robotics and Automation, 1990, 6 (3): 348- 356.
doi: 10.1109/70.56653 |
15 |
WU Y X, HU X P, HU D W, et al. Strapdown inertial navigation system algorithms based on dual quaternions. IEEE Trans. on Aerospace Electronic Systems, 2005, 41 (1): 110- 132.
doi: 10.1109/TAES.2005.1413751 |
16 |
THOMAS F. Approaching dual quaternions from matrix algebra. IEEE Trans. on Robotics, 2014, 30 (5): 1037- 1048.
doi: 10.1109/TRO.2014.2341312 |
17 | SHARKAWY A N, ASRAGATHOS N. A comparative study of two methods for forward kinematics and Jacobian matrix determination. Proc. of the International Conference on Mechanical, System and Control Engineering, 2017: 179-183. |
18 |
BRODSKY V, SHOHAM M. Dual numbers representation of rigid body dynamics. Mechanism and Machine Theory, 1999, 34 (5): 693- 718.
doi: 10.1016/S0094-114X(98)00049-4 |
19 |
WANG J Y, LIANG H C, SUN Z W, et al. Finite-time control for spacecraft formation with dual-number-based description. Journal of Guidance, Control, and Dynamics, 2012, 35 (3): 950- 962.
doi: 10.2514/1.54277 |
20 | DONG H Y, HU Q L, MA G F. Dual-quaternion based faulttolerant control for spacecraft formation flying with finite-time convergence. ISA Transactions, 2016, 61 (99): 87- 94. |
21 |
FILIPE N, TSIOTRAS P. Adaptive position and attitudetracking controller for satellite proximity operations using dual quaternions. Journal of Guidance, Control, and Dynamics, 2015, 38 (4): 566- 577.
doi: 10.2514/1.G000054 |
22 | GUI H C, VUKOVICH G. Dual quaternion based adaptive motion tracking of spacecraft with reduced control effort. Nonlinear Dynamics, 2016, 83 (1/2): 597- 614. |
23 | GAO W, ZHU X G, ZHOU M L, et al. ADRC law of spacecraft rendezvous and docking in final approach phase. Journal of Cybernetics, 2016, 47 (3): 236- 248. |
24 | KAZEMIPOUR A, NOVINZADEH A B. Adaptive position and attitude tracking control for satellite proximity operations using sliding mode and time delay estimation. Proc. of the 25th Iranian Conference on Electrical, 2017: 585-590. |
25 |
DONG H Y, HU Q L, AKELLA M R. Dual-quaternion-based spacecraft autonomous rendezvous and docking under sixdegree-of-freedom motion constraints. Journal of Guidance, Control, and Dynamics, 2018, 41 (5): 1150- 1162.
doi: 10.2514/1.G003094 |
26 | LU W, GENG Y H, CHEN X Q, et al. Relative position and attitude coupled control for autonomous docking with a tumbling target. International Journal of Control and Automation, 2011, 4 (4): 1- 22. |
27 |
CHEN B L, GENG Y H. Super twisting controller for on-orbit servicing to noncooperative target. Chinese Journal of Aeronautics, 2015, 28 (1): 285- 293.
doi: 10.1016/j.cja.2014.12.030 |
28 |
BRODSKY V, SHOHAM M. Dual numbers representation of rigid body dynamics. Mechanism and Machine Theory, 1999, 34 (5): 693- 718.
doi: 10.1016/S0094-114X(98)00049-4 |
29 |
WANG J Y, LIANG H C, SUN Z W, et al. Relative motion coupled control based on dual quaternion. Aerospace Science Technology, 2013, 25 (1): 102- 113.
doi: 10.1016/j.ast.2011.12.013 |
30 | COHEN A, SHOHAM M. Principle of transference-an extension to hyper-dual numbers. Mechanism and Machine Theory, 2018, 125 (1): 101- 110. |
31 |
KUSSABA H T M, FIGUEREDO L F C, ISHIHARA J Y, et al. Hybrid kinematic control for rigid body pose stabilization using dual quaternions. Journal of the Franklin Institute, 2017, 354 (7): 2769- 2787.
doi: 10.1016/j.jfranklin.2017.01.028 |
32 | MARKLEY F L, CRASSIDIS J L. Fundamentals of spacecraft attitude determination and control. New York: Springer, 2014. |
33 | NAKAJIMA Y, MITANI S, TANI H, et al. Detumbling space debris via thruster plume impingement. Proc. of the AIAA/AAS Astrodynamics Dynamics Specialist Conference, 2016: 5660-5679. |
34 |
YOUNGQUIST R C, NURGE M A, STARR S, et al. A slowly rotating hollow sphere in a magnetic field:first steps to despin a space object. American Journal of Physics, 2016, 84 (3): 181- 191.
doi: 10.1119/1.4936633 |
35 |
GOMEZ N O, WALKER S J I. Eddy currents applied to detumbling of space debris:analysis and validation of approximate proposed methods. Acta Astronautica, 2015, 114, 34- 53.
doi: 10.1016/j.actaastro.2015.04.012 |
36 |
PENG X, SHI X P, GONG Y P. Integrated modeling of spacecraft relative motion dynamics using dual quaternion. Journal of Systems Engineering and Electronics, 2018, 29 (2): 367- 377.
doi: 10.21629/JSEE.2018.02.17 |
[1] | Xuan PENG, Xiaoping SHI, Yupeng GONG. Integrated modeling of spacecraft relative motion dynamics using dual quaternion [J]. Journal of Systems Engineering and Electronics, 2018, 29(2): 367-377. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||