1 
OSUKA A, MATSUOKA Y, YSUTSU T, et al. Development of pinionassist type electric power steering system. KOYO Engineering Journal, 2002, 161 (1): 567 578.

2 
GOLLU A, VARAIYA P D. Hybdrid dynamic systems. Proc. of the 28th IEEE Conference on Decision and Control, 1989: 27082713.

3 
SEIDMAN T I. Switching systems. Baltimore, the United States: UMBC, 1999.

4 
FERRARITRECATE G, MUSELLI M, LIBERATI D, et al. A clustering technique for the identification of piece wise affine systems. Automatica, 2003, 39 (2): 205 217.
doi: 10.1016/S00051098(02)002248

5 
BEMPORAD A, GARULLI A, PAOLETTI S, et al. A bounded error approach to piecewise affine system identification. IEEE Trans. on Automatic Control, 2005, 50 (10): 1567 1580.
doi: 10.1109/TAC.2005.856667

6 
MA Y, RENÉ V. Identification of deterministic switched ARX systems via identification of algebraic varieties. Proc. of the 8th International Workshop on Hybrid Systems: Computation and Control, 2005: 449465.

7 
VIDAL R, SOATTO S, MA Y, et al. An algebraic geometric approach to the identification of a class of linear hybrid systems. Proc. of the 42nd IEEE Conference on Decision and Control, 2003: 167172.

8 
ROLL J, BEMPORAD A, LJUNG L. Identification of piece wise affine systems via mixedinteger programming. Automatica, 2004, 40 (1): 37 50.
doi: 10.1016/j.automatica.2003.08.006

9 
JULOSKI A, WEILAND S. A Bayesian approach to the identification of piecewise linear output error models. Proc. of the 14th IFAC Symposium on System Identification, 2006: 374379.

10 
JULOSKI A, WEILAND S, HEEMELS W. A Bayesian approach to identification of hybrid systems. IEEE Trans. on Automatic Control, 2005, 50 (10): 1520 1533.
doi: 10.1109/TAC.2005.856649

11 
VERDULT V, VERHAEGEN M. Subspace identification of piecewise linear systems. Proc. of the 43rd IEEE Conference on Decision and Control, 2004: 38383843.

12 
BORGES J, VERDULT V, VERHAEGEN M, et al. A switching detection method based on projected subspace classification. Proc. of the 44th IEEE Conference on Decision and Control, and the European Control Conference, 2005: 344349.

13 
PEKPE K, MOEROT G, GASSO K, et al. Identification of switching systems using change detection technique in the subspace framework. Proc. of the 43rd IEEE Conference on Decision and Control, 2004: 37203725.

14 
VIDAL R. Recursive identification of switched ARX systems. Automatica, 2008, 44 (9): 2274 2287.
doi: 10.1016/j.automatica.2008.01.025

15 
LAURENT B, KHALED B, ERIC D, et al. A recursive identification algorithm for switched linear/affine models. Nonlinear Analysis: Hybrid Systems, 2011, 5 (1): 242 253.

16 
LAURENT B. Identification of switched linear systems via sparse optimization. Automatica, 2011, 47 (2): 668 677.

17 
WANG J D, CHEN T W. Online identification of switched linear output error models. Proc. of the IEEE International Symposium on ComputerAided Control System Design, 2011: 13791384.

18 
DING F, WANG Y. Filteringbased iterative identification for multivariable systems. IET Control Theory & Applications, 2016, 10 (8): 894 902.

19 
WANG H W, XIE L R. Convergence analysis of a least squared algorithm of linear switched identification. Journal of Control and Decision, 2019, 6 (3): 1 12.

20 
CHEN J, XIONG J. Switching time estimation for switching ARMAX systems. Telecommunication Engineering, 2017, 57 (9): 1011 1016.

21 
DING F. Systems identificationperformance analysis of the identification methods. Beijing: Science Press, 2014.

22 
DING F, CHEN T W. Performance analysis of multiinnovation gradient type identification methods. Automatica, 2007, 43 (1): 1 14.
doi: 10.1016/j.automatica.2006.07.024

23 
DING F, CHEN T W. Multiinnovation stochastic gradient identification methods. Proc. of the 16th World Congress on Intelligent Control and Automation, 2016: 15011505.

24 
MAO Y, DING F, YANG E. Adaptive filteringbased multiinnovation gradient algorithm for input nonlinear systems with autoregressive noise. International Journal of Adaptive Control and Signal Processing, 2017, 31 (3): 1388 1400.

25 
LI X L, ZHOU L C, DING R F, et al. Recursive least squares estimation algorithm for Hammerstein nonlinear systems with nonuniform sampling. Mathematical Problems in Engineering, 2013, 67 (9): 1811 1818.

26 
ZHENG E X, LIU R R, JIANG Y F, et al. Stochastic gradient identification for Hammerstein systems with nonuniformly sampling. Computer Systems Science and Engineering, 2016, 31 (6): 439 444.

27 
LIU R R, ZHENG E X, CHANG S, et al. Hierarchical stochastic gradient identification for nonuniformly sampling Hammerstein systems with colored noise. Computer Systems Science and Engineering, 2016, 31 (6): 425 430.

28 
ZHOU L C, LI X L, PAN F. Gradientbased iterative identification for wiener nonlinear systems with nonuniform sampling. Nonlinear Dynamics, 2014, 76 (1): 627 634.
doi: 10.1007/s1107101311565

29 
LIU R R, LI H R, PAN T H, et al. Parameter estimation for nonuniformly sampled wiener systems with deadzone nonlinearities. IFACPapers OnLine, 2015, 28 (8): 789 794.

30 
ZHOU L C, LI X L, SHAN L J, et al. Hierarchical recursive least squares parameter estimation of nonuniformly sampled Hammerstein nonlinear systems based on Kalman filter. Journal of the Franklin Institute, 2017, 354 (10): 4231 4246.
doi: 10.1016/j.jfranklin.2017.02.010

31 
LIU R R, PAN T H, LI Z M. Multimodel recursive identification for nonlinear systems with nonuniformly sampling. Cluster Computer, 2017, 20 (11): 25 32.
