Journal of Systems Engineering and Electronics ›› 2019, Vol. 30 ›› Issue (6): 1260-1271.doi: 10.21629/JSEE.2019.06.20
• Reliability • Previous Articles
Received:
2018-12-26
Online:
2019-12-20
Published:
2019-12-25
Contact:
Zhenya WU
E-mail:wzy9012@163.com;hao001@sina.com
About author:
WU Zhenya was born in 1990. He received his B.S. degree in missile engineering from Air Force Engineering University, Xi'an, Shaanxi, China, in 2013, and M.S. degree in equipment management from Air Force Engineering University, in 2016. He is currently pursuing his Ph.D. degree in armament science and technology at Shijiazhuang Campus of Army Engineering University. His current research interests include maintainability demonstration and statistics. E-mail: Supported by:
Zhenya WU, Jianping HAO. Clustering-based maintainability demonstration for complex systems with a mixed maintenance time distribution[J]. Journal of Systems Engineering and Electronics, 2019, 30(6): 1260-1271.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Maintainability attributes for mechanical systems"
Feature | Number | Maintainability attribute |
1 | Accessibility | |
2 | Disassembly/assembly | |
3 | Standardization | |
4 | Simplicity | |
Design | 5 | Identification |
6 | Diagnosability | |
7 | Modularization | |
8 | Tribo-concepts | |
Personnel | 9 | Personnel including ergonomics |
10 | System environment | |
Logistic | 11 | Tools and test equipment |
Support | 12 | Documentation |
Table 2
Equipment maintenance time records"
Number | A | B | C | D | E | F | G | H | I |
1 | 17(2.83) | 35(3.56) | 13(2.56) | 16(2.77) | 31(3.43) | 20(3.00) | 31(3.43) | 19(2.94) | 45(3.81) |
2 | 9(2.19) | 39(3.66) | 21(3.04) | 14(2.64) | 28(3.33) | 11(2.40) | 16(2.77) | 28(3.33) | 47(3.85) |
3 | 29(3.37) | 21(3.04) | 28(3.33) | 15(2.71) | 23(3.14) | 18(2.89) | 30(3.40) | 23(3.14) | 42(3.74) |
4 | 11(2.40) | 13(2.56) | 19(2.94) | 16(2.77) | 33(3.50) | 20(3.00) | 16(2.77) | 25(3.22) | 41(3.71) |
5 | 20(3.00) | 11(2.40) | 18(2.89) | 15(2.71) | 37(3.61) | 8(2.08) | 16(2.77) | 28(3.33) | 36(3.58) |
6 | 10(2.30) | 17(2.83) | 33(3.50) | 12(2.48) | 29(3.37) | 9(2.20) | 37(3.61) | 23(3.14) | 41(3.71) |
7 | 11(2.40) | 19(2.94) | 12(2.48) | 16(2.77) | 38(3.64) | 13(2.56) | 9(2.20) | 25(3.22) | 31(3.43) |
8 | 25(3.22) | 10(2.30) | 19(2.94) | 36(3.58) | 29(3.37) | 10(2.30) | 20(3.00) | 28(3.33) | 32(3.47) |
9 | 10(2.30) | 15(2.71) | 23(3.14) | 19(2.94) | 38(3.64) | 32(3.47) | 19(2.94) | 33(3.50) | 34(3.53) |
10 | 15(2.71) | - | 23(3.14) | - | 39(3.66) | 33(3.50) | 22(3.09) | 27(3.30) | 34(3.53) |
11 | - | - | 18(2.89) | - | 39(3.66) | 11(2.40) | - | 36(3.58) | 34(3.53) |
12 | - | - | 17(2.83) | - | 32(3.47) | 18(2.89) | - | 28(3.33) | - |
13 | - | - | 20(3.00) | - | 23(3.14) | - | - | - | - |
Mean= 23.62 min(3.07); Variance ≈ 97.61 min2(0.20) |
Table 3
Initial parameters for each component's distribution using the K-means algorithm"
Model | Centroid | Boundary | |||||||
1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | ||
k = 2 | 2.68 | 3.44 | – | – | [2.07 3.05] | [3.09 3.86] | – | – | |
k = 3 | 2.38 | 2.95 | 3.52 | – | [2.07 2.64] | [2.70 3.22] | [3.29 3.86] | – | |
k = 4 | 2.36 | 2.79 | 3.06 | 3.52 | [2.07 2.57] | [2.63 2.90] | [2.94 3.22] | [3.29 3.86] |
Table 4
Improved parameters for each component's distribution using the EM algorithm"
Model | Component distribution | |||
1 | 2 | 3 | 4 | |
k = 2 | | – | – | |
k = 3 | | | – | |
k = 4 | | | |
Table 5
Improved parameters for each component's distribution using the EM algorithm"
Model | Component distribution | |||
1 | 2 | 3 | 4 | |
k = 2 | | – | – | |
k = 3 | | | – | |
k = 4 | | | |
1 | U.S. Department of Defense. Designing and developing maintainable products and systems. MIL-HDBK-470A, 1997. |
2 | DHILLON B S. Engineering maintainability. Houston: Gulf Professional Publishing, 1999. |
3 | EBELING C E. An introduction to reliability and maintainability engineering. New York: McGraw-Hill, 1997. |
4 | ALMOG R. A study of the application of the lognormal distribution to corrective maintenance repair time. Monterey, California: Naval Postgraduate School, 1979. |
5 | CAMOZU E. A study of the application of the lognormal and gamma distributions to corrective maintenance repair time data. Monterey, California: Naval Postgraduate School, 1982. |
6 |
BOVAIRD R L, ZAGOR H L. Lognormal distribution and maintainability in support systems research. Naval Research Logistics, 1961, 8 (4): 343- 356.
doi: 10.1002/nav.3800080403 |
7 | International Electrotechnical Commission. Maintainability of equipment. IEC 60706-3, 2006. |
8 |
KLINE M B. Suitability of the lognormal distribution for corrective maintenance repair times. Reliability Engineering, 1984, 9 (2): 65- 80.
doi: 10.1016/0143-8174(84)90041-6 |
9 | TITTERINGTON D M, SMITH A F M, MAKOV U E. Statistical analysis of finite mixture distributions. Chichester: John Wiley & Sons, 1985. |
10 | SMITH D J. Reliability engineering. Bath: Pitman, 1972. |
11 | SMITH D J. Reliability, maintainability and risk: practical methods for engineers. Oxford: Elsevier, 2011. |
12 |
ZHANG R J, ZHANG L L, WANG N N, et al. Reliability evaluation of a multi-state system based on interval-valued triangular fuzzy Bayesian networks. International Journal of System Assurance Engineering and Management, 2016, 7 (1): 16- 24.
doi: 10.1007/s13198-015-0335-9 |
13 |
YUAN X B, CAI B P, MA Y P, et al. Reliability evaluation methodology of complex systems based on dynamic object-oriented Bayesian networks. IEEE Access, 2018, 6, 11289- 11300.
doi: 10.1109/ACCESS.2018.2810386 |
14 | LI D Q, TANG X S, PHOON K K. Bootstrap method for characterizing the effect of uncertainty in shear strength parameters on slope reliability. Reliability Engineering & System Safety, 2015, 140, 99- 106. |
15 | GUO J B, WANG C X, CABRERA J, et al. Improved inverse Gaussian process and bootstrap: degradation and reliability metrics. Reliability Engineering & System Safety, 2018, 178, 269- 277. |
16 |
MIAO Q, LIU L, FENG Y, et al. Complex system maintainability verification with limited samples. Microelectronics Reliability, 2011, 51 (2): 294- 299.
doi: 10.1016/j.microrel.2010.09.012 |
17 |
YANG H, HASSAN S G, WANG L, et al. Fault diagnosis method for water quality monitoring and control equipment in aquaculture based on multiple SVM combined with D-S evidence theory. Computers and Electronics in Agriculture, 2017, 141, 96- 108.
doi: 10.1016/j.compag.2017.05.016 |
18 |
GONG Y J, SU X Y, QIAN H, et al. Research on fault diagnosis methods for the reactor coolant system of nuclear power plant based on D-S evidence theory. Annals of Nuclear Energy, 2018, 112, 395- 399.
doi: 10.1016/j.anucene.2017.10.026 |
19 |
LIMPERT E, ABBT M, STAHEL W A. Log-normal distributions across the sciences: keys and clues. BioScience, 2001, 51 (5): 341- 352.
doi: 10.1641/0006-3568(2001)051[0341:LNDATS]2.0.CO;2 |
20 | AITCHISON J, BROWN J A C. The lognormal distribution. Cambridge: Cambridge University Press, 1957. |
21 | MCLACHLAN G J, PEEL D. Finite mixture models. New York: John Wiley & Sons, 2000. |
22 | DEMPSTER A P, LAIRD N M, RUBIN D B. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 1977, 39 (1): 1- 38. |
23 | MCLACHLAN G J, BASFORD K E. Mixture models: inference and applications to clustering. New York: Marcel Dekker, 1998. |
24 |
REDNER R A, WALKER H F. Mixture densities, maximum likelihood and the EM algorithm. SIAM Review, 1984, 26 (2): 195- 239.
doi: 10.1137/1026034 |
25 | WANG Y M. A projection method for multiindices decision making. Journal of Systems Engineering and Electronics, 1998, 9 (3): 1- 7. |
26 |
XU Z S. On method for uncertain multiple attribute decision making problems with uncertain multiplicative preference information on alternatives. Fuzzy Optimization and Decision Making, 2005, 4 (2): 131- 139.
doi: 10.1007/s10700-004-5869-2 |
27 |
YUE Z L. Approach to group decision making based on determining the weights of experts by using projection method. Applied Mathematical Modelling, 2012, 36 (7): 2900- 2910.
doi: 10.1016/j.apm.2011.09.068 |
28 |
ZHENG G Z, JING Y Y, HUANG H X, et al. Application of improved grey relational projection method to evaluate sustainable building envelope performance. Applied Energy, 2010, 87 (2): 710- 720.
doi: 10.1016/j.apenergy.2009.08.020 |
29 | FORGY E. Cluster analysis of multivariate data: efficiency versus interpretability of classifications. Biometrics, 1965, 21, 768- 780. |
30 |
LLOYD S. Least squares quantization in PCM. IEEE Trans. on Information Theory, 1982, 28 (2): 129- 137.
doi: 10.1109/TIT.1982.1056489 |
31 | RAY S. Distance-based model-selection with application to analysis of gene expression data. Pennsylvania, USA: The Pennsylvania State University, 2003. |
32 | SCHWARZ G. Estimating the dimension of a model. Annals of Statistics, 1978, 6 (2): 461- 464. |
33 | WANI M F, GANDHI O P. Development of maintainability index for mechanical systems. Reliability Engineering & System Safety, 1999, 65 (3): 259- 270. |
34 | U.S. Department of Defense. Maintainability prediction. MIL-HDBK-472, 1966. |
35 | DURRANT-WHYTE H. Consistent integration and propagation of disparate sensor observations. Proc. of the IEEE International Conference on Robotics and Automation, 1986: 1464-1469. |
36 | HAROLD S. Maintainability prediction and demonstration techniques. RADC-TR-69-356, New York: Rome Air Development Center, 1970. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||