Journal of Systems Engineering and Electronics ›› 2020, Vol. 31 ›› Issue (5): 1062-1076.doi: 10.23919/JSEE.2020.000080
• Control Theory and Application • Previous Articles Next Articles
Qingguo LIU(), Xinxue LIU(), Jian WU*(), Yaxiong LI()
Received:
2019-06-17
Online:
2020-10-30
Published:
2020-10-30
Contact:
Jian WU
E-mail:teamalpha@163.com;sp@163.com;wujian6029@163.com;13571996716@139.com
About author:
LIU Qingguo was born in 1991. He received his B.S. degree in aeronautical and astronautical science and technology from Xi'an High-tech Institute in 2015. He is pursuing his Ph.D. degree in Xi'an High-tech Institute. His research interests are flight mechanics, structural analysis of space vehicles and decision optimization. E-mail: Supported by:
Qingguo LIU, Xinxue LIU, Jian WU, Yaxiong LI. A fast computational method for the landing footprints of space-to-ground vehicles[J]. Journal of Systems Engineering and Electronics, 2020, 31(5): 1062-1076.
Table 1
Ten experiments"
No. | | ||||||
1 | 9 406 | 0.234 450 | 29.321 | 224.038 | 307.947 | 135.862 | 4 605.5 |
2 | 7 159 | 0.000 325 | 98.084 | 76.415 | 185.381 | 283.332 | 4 486.3 |
3 | 9 337 | 0.000 265 | 52.006 | 171.286 | 350.025 | 188.701 | 4 509.2 |
4 | 7 838 | 0.001 419 | 101.618 | 87.162 | 293.441 | 282.681 | 4 466.1 |
5 | 7 717 | 0.054 058 | 99.013 1 | 56.362 | 347.918 | 308.882 | 4 486.0 |
6 | 7 654 | 0.002 862 | 90.045 | 245.644 | 85.205 | 113.968 | 4 524.4 |
7 | 8 328 | 0.201 675 | 82.382 | 262.455 | 29.931 | 44.341 | 4 438.5 |
8 | 9 511 | 0.213 250 | 28.126 | 34.617 | 152.421 | 325.392 | 4 459.4 |
9 | 9 431 | 0.016 526 | 64.422 | 302.102 | 337.357 | 56.304 | 4 483.6 |
10 | 10 024 | 0.321 619 | 56.927 | 231.699 | 218.468 | 128.371 | 4 518.3 |
Table 2
Coefficients of fitting curves (high latitude or longitude side)"
Number | |||||
1 | –3.194 444 e–6 | 1.233 779 e–3 | –1.919 443 e–1 | 1.514 211 e+1 | –3.883 817 e+2 |
2 | –8.256 123 e–5 | 2.024 390 e–2 | –1.619 387 | 5.305 329 e+1 | –6.151 001 e+2 |
3 | –4.012 587 e–6 | 1.495 236 e–3 | –2.784 367 e–1 | 2.249 619 e+1 | –6.293 869 e+2 |
4 | –5.772 980 e–5 | 1.255 224 e–2 | –1.005 445 | 2.842 024 e+1 | –1.540 246 e+2 |
5 | –1.519 489 e–4 | 2.663 004 e–2 | 1.478 789 | 4.130 832 e+1 | –3.109 007 e+2 |
6 | –4.037 333 e–5 | 8.784 321 e–3 | –7.144 400 e–1 | 2.549 818 e+1 | –2.075 674 e+2 |
7 | –1.397 543 e–4 | 3.408 221 e–2 | –2.787 432 | 9.969 876 e+1 | –1.309 384 e+3 |
8 | –4.214 520 e–6 | 1.114 532 e–3 | –1.340 298 e–1 | 8.091 355 | –1.224 080 e+2 |
9 | –2.331 988 e–4 | 3.725 921 e–2 | –3.201 335 | 1.244 620 e+2 | –1.789 788 e+3 |
10 | –3.090 332 e–4 | 3.844 785 e–2 | 3.145 540 9 | 1.084 894 e+2 | –1.384 916 e+3 |
Table 3
Coefficients of fitting curves (low latitude or longitude side)"
Number | |||||
1 | 6.441 445 e–7 | –2.563 355 e–4 | 2.536 902 e–2 | –1.817 822 e–1 | –2.005 818 e+1 |
2 | 3.573 245 e–4 | –3.856 786 e–2 | 3.328 224 | –1.309 137 e+2 | 1.941 689 e+e3 |
3 | 8.439 678 e–7 | –3.980 074 e–4 | 3.934 290 e–2 | –8.826 228 e–1 | –1.826 913 e+1 |
4 | 2.699 356 e–5 | 6.645 901 e–3 | 5.467 708 e–1 | 2.391 602 e+1 | 5.170 087 e+2 |
5 | –3.102 356 e–5 | 4.248 810 e–3 | 2.511 124 e–1 | 6.101 356 | 5.977 024 e+1 |
6 | –4.884 679 e–6 | 1.253 366 e–3 | –9.820 098 e–2 | 3.268 925 | 8.756 833 e+1 |
7 | –7.493 214 e–6 | 5.948 623 e–4 | 1.142 389 e–1 | –1.444 100 e+1 | 3.714 782 e+2 |
8 | 2.332 990 e–7 | –3.002 315 e–4 | 4.742 596 e–3 | 9.270 998 e–1 | –1.701 552 e+1 |
9 | –5.454 633 e–5 | 7.603 279 e–3 | –6.165 638 e–1 | 1.584 644 e+1 | –5.327 344 e+1 |
10 | –3.295 180 e–5 | 1.211 239 e–2 | –8.845 530 e–1 | 2.358 660 e+1 | –1.759 743 e+2 |
Table 4
Results (high latitude or longitude side) obtained by the BP neural networks"
Number | |||||
1 | –2.364 762 e–6 | 1.093 990 e–3 | –1.919 619 e–1 | 1.514 202 e+1 | –3.883 818 e+2 |
2 | –9.386 719 e–5 | 2.053 956 e–2 | –1.619 389 | 5.305 330 e+1 | –6.151 000 e+2 |
3 | –3.243 843 e–6 | 1.545 236 e–3 | –2.784 475 e–1 | 2.249 620 e+1 | –6.293 869 e+2 |
4 | –7.052 381 e–5 | 1.415 389 e–2 | –1.005 241 | 2.842 022 e+1 | –1.540 246 e+2 |
5 | –1.409 326 e–4 | 2.343 824 e–2 | 1.478 954 | 4.130 829 e+1 | –3.109 008 e+2 |
6 | –4.277 951 e–5 | 8.904 313 e–3 | –7.144 316 e–1 | 2.549 826 e+1 | –2.075 673 e+2 |
7 | –1.492 619 e–4 | 3.358 251 e–2 | –2.787 314 | 9.969 881 e+1 | –1.309 385 e+3 |
8 | –2.874 275 e–6 | 1.004 532 e–3 | –1.340 367 e–1 | 8.091 336 | –1.224 080 e+2 |
9 | –1.491 477 e–4 | 3.585 920 e–2 | –3.201 586 | 1.244 616 e+2 | –1.789 787 e+3 |
10 | –1.840 043 e–4 | 3.954 786 e–2 | 3.145 550 4 | 1.084 895 e+2 | –1.384 915 e+3 |
Table 5
Results (low latitude or longitude side) obtained by the BP neural networks"
Number | |||||
1 | 7.261 776 e–7 | –2.546 767 e–4 | 2.542 910 e–2 | –1.817 815 e–1 | –2.005 819 e+1 |
2 | 1.683 400 e–4 | –3.843 956 e–2 | 3.328 331 | –1.309 139 e+2 | 1.941 689 e+e3 |
3 | 9.789 098 e–7 | –3.551 292 e–4 | 3.932 091 e–2 | –8.826 921 e–1 | –1.826 912 e+1 |
4 | 3.519 243 e–5 | 6.694 692 e–3 | 5.467 192 e–1 | 2.391 697 e+1 | 5.170 088 e+2 |
5 | –2.993 518 e–5 | 4.384 012 e–3 | 2.510 960 e–1 | 6.101 730 | 5.977 056 e+1 |
6 | –5.956 112 e–6 | 1.193 456 e–3 | –9.824 865 e–2 | 3.268 925 | 8.756 860 e+1 |
7 | –8.504 437 e–6 | 6.485 160 e–4 | 1.147 097 e–1 | –1.444 156 e+1 | 3.714 789 e+2 |
8 | 7.390 693 e–7 | –1.630 918 e–4 | 4.747 751 e–3 | 9.270 948 e–1 | –1.701 510 e+1 |
9 | –3.333 035 e–5 | 7.864 112 e–3 | –6.164 476 e–1 | 1.584 621 e+1 | –5.327 374 e+1 |
10 | –5.666 975 e–5 | 1.208 691 e–2 | –8.844 547 e–1 | 2.358 612 e+1 | –1.759 747 e+2 |
Table 6
Relative errors in ten experiments"
Number | ||||
1 | 3 895.231 | 2 | 61.365 | 1.575 |
2 | 405.332 | 4 | 6.225 | 1.536 |
3 | 3 698.298 | 3 | 33.946 | 0.918 |
4 | 824.369 | 4 | 5.364 | 0.651 |
5 | 305.251 | 3 | 3.001 | 0.983 |
6 | 442.264 | 5 | 2.003 | 0.453 |
7 | 399.257 | 4 | 5.221 | 1.308 |
8 | 3 591.945 | 3 | 10.399 | 0.290 |
9 | 610.239 | 5 | 3.987 | 0.653 |
10 | 701.885 | 4 | 1.986 | 0.283 |
Table 7
Comparison of the computational time"
Number | |||||
1 | 1 020.442 | 501.781 | 0.009 | 0.088 | 0.179 |
2 | 1 062.002 | 522.388 | 0.009 | 0.085 | 0.172 |
3 | 1 040.661 | 495.365 | 0.009 | 0.086 | 0.182 |
4 | 998.730 | 489.668 | 0.009 | 0.090 | 0.184 |
5 | 1 082.793 | 526.398 | 0.009 | 0.083 | 0.171 |
6 | 1 081.976 | 504.412 | 0.009 | 0.083 | 0.178 |
7 | 1 040.666 | 511.162 | 0.009 | 0.086 | 0.176 |
8 | 998.471 | 480.114 | 0.009 | 0.090 | 0.187 |
9 | 1 078.563 | 529.652 | 0.009 | 0.083 | 0.170 |
10 | 1 000.211 | 478.200 | 0.009 | 0.089 | 0.188 |
Table 8
Relative errors of three methods"
Number | |||
1 | 61.365 | 90.220 | 80.365 |
2 | 6.225 | 41.613 | 25.935 |
3 | 33.946 | 52.902 | 43.023 |
4 | 5.364 | 60.003 | 42.594 |
5 | 3.001 | 25.623 | 28.330 |
6 | 2.003 | 39.565 | 31.020 |
7 | 5.221 | 28.001 | 18.674 |
8 | 10.399 | 22.000 | 24.336 |
9 | 3.987 | 36.297 | 15.236 |
10 | 1.986 | 15.336 | 19.902 |
Table 9
Computational time of three methods"
Number | |||
1 | 0.009 | 11.781 | 92.365 |
2 | 0.009 | 10.229 | 98.334 |
3 | 0.009 | 11.005 | 129.005 |
4 | 0.009 | 11.209 | 102.650 |
5 | 0.009 | 10.556 | 109.728 |
6 | 0.009 | 12.001 | 97.443 |
7 | 0.009 | 11.225 | 96.005 |
8 | 0.009 | 11.300 | 103.820 |
9 | 0.009 | 11.023 | 108.000 |
10 | 0.009 | 11.058 | 119.326 |
1 |
NAZARENKO A I, USOVIK I V. The effect of parameters of the initial data updating algorithm on the accuracy of spacecraft reentry time prediction. Journal of Space Safety Engineering, 2019, 6 (1): 24- 29.
doi: 10.1016/j.jsse.2019.01.002 |
2 |
DESIKAN S L N, SRINIVASAN K. Longitudinal aerodynamics of a winged reentry vehicle at supersonic speed. Journal of Spacecraft and Rockets, 2018, 55 (5): 1144- 1153.
doi: 10.2514/1.A34088 |
3 |
LOBBIA M A. Multidisciplinary design optimization of waverider-derived crew reentry vehicles. Journal of Spacecraft and Rockets, 2017, 54 (1): 233- 245.
doi: 10.2514/1.A33253 |
4 | SGUBINI S, PALMERINI G B. Evaluation of main parameters in re-entry trajectories. Aerotecnica Missili & Spazio, 2016, 95 (1): 42- 49. |
5 |
GANGIREDDY S, ASHOK J. Re-entry trajectory optimization using pigeon inspired optimization based control profiles. Advances in Space Research, 2018, 62 (11): 3170- 3186.
doi: 10.1016/j.asr.2018.08.009 |
6 | JIANG X Q, LI S. Mars atmospheric entry trajectory optimization via particle swarm optimization and Gauss pseudo-spectral method. Proc. of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2016: 2320-2329. |
7 | WANG Z B, GRANT M J. Constrained trajectory optimization for planetary entry via sequential convex programming. Journal of Guidance, Control, and Dynamics, 2017, 40 (10): 1- 13. |
8 |
GUO C M, ZHANG J, LUO Y Z, et al. Phase-matching homotopic method for indirect optimization of long-duration low-thrust trajectories. Advances in Space Research, 2018, 62 (3): 568- 579.
doi: 10.1016/j.asr.2018.05.007 |
9 |
SHEN H X. No-guess indirect optimization of asteroid mission using electric propulsion. Optimal Control Applications and Methods, 2018, 39 (2): 1061- 1070.
doi: 10.1002/oca.2396 |
10 |
RASOTTO M, ARMELLIN R, DI L P. Multi-step optimization strategy for fuel-optimal orbital transfer of low-thrust spacecraft. Engineering Optimization, 2016, 48 (3): 519- 542.
doi: 10.1080/0305215X.2015.1025773 |
11 | GAO Y, WANG J, WU W, et al. A hybrid method for mobile agent moving trajectory scheduling using ACO and PSO in WSNs. Sensors, 2019, 19 (3): 3- 15. |
12 |
LEOBARDO C M, DAVID G G, RODRIGO A L, et al. A hybrid method for online trajectory planning of mobile robots in cluttered environments. IEEE Robotics and Automation Letters, 2017, 2 (2): 935- 942.
doi: 10.1109/LRA.2017.2655145 |
13 | SARAF A, LEAVITT J A, MEASE K D. Landing footprint computation for entry vehicles. Proc. of the AIAA Guidance, Navigation, and Control Conference and Exhibit, 2004, 1- 14. |
14 |
LI D W, JIANG R K, LIU B. Reentry landing boundary prediction. Applied Mechanics and Materials, 2013, 433-435, 1123- 1126.
doi: 10.4028/www.scientific.net/AMM.433-435.1123 |
15 | HU H L, NAN Y, WEN X. Research on dynamic reentry footprint for the spacecraft based on the genetic algorithm. Chinese Space Science and Technology, 2014, 34 (1): 35- 41. |
16 |
NGUYEN B H, GERMAN R, TROVAO J, et al. Real-time energy management of battery/supercapacitor electric vehicles based on an adaptation of Pontryagin's minimum principle. IEEE Trans. on Vehicular Technology, 2019, 68 (1): 203- 212.
doi: 10.1109/TVT.2018.2881057 |
17 |
SARI C, SUBCHAN S. Application of Pontryagin's minimum principle in optimum time of missile manoeuvring. Cauchy, 2016, 4 (3): 107- 111.
doi: 10.18860/ca.v4i3.3534 |
18 |
NADIR O, LOUNIS A, RUSTEM A. From offline to adaptive online energy management strategy of hybrid vehicle using Pontryagin's minimum principle. International Journal of Automotive Technology, 2018, 19 (3): 571- 584.
doi: 10.1007/s12239-018-0054-8 |
19 | GWAK H S, BEA S H, LEE D E. Resource leveling using genetic algorithm. Journal of the Architectural Institute of Korea Structure & Construction, 2018, 34 (2): 67- 74. |
20 | KITA H. Genetic algorithms for noisy fitness functions—applications, requirements and algorithms. Proc. of the ISCIE International Symposium on Stochastic Systems Theory and Applications, 2001, 137- 142. |
21 |
SHOJAEDINI E, MAJD M, SAFABAKHSH R. Novel adaptive genetic algorithm sample consensus. Applied Soft Computing, 2019, 77, 635- 642.
doi: 10.1016/j.asoc.2019.01.052 |
22 | NAEENI A A, ROSHANIAN J. Developing a hybrid algorithm to design the optimal trajectory of reentry vehicles. Modares Mechanical Engineering, 2015, 14 (13): 143- 149. |
23 |
ROBERTO P, GIANFRANCO M, MARCO C. Reentry trajectory optimization for mission analysis. Journal of Spacecraft and Rockets, 2017, 54 (1): 331- 336.
doi: 10.2514/1.A33465 |
24 |
EDWARDS M R. Deep mantle plumes and an increasing Earth radius. Geodesy and Geodynamics, 2019, 10 (3): 173- 178.
doi: 10.1016/j.geog.2019.03.002 |
25 |
KOPECZ S, MEISTER A. On order conditions for modified Patankar-Runge-Kutta schemes. Applied Numerical Mathematics, 2018, 123, 159- 179.
doi: 10.1016/j.apnum.2017.09.004 |
26 |
RUBIO A. Propagators for the time-dependent Kohn-Sham equations: multistep, Runge-Kutta, exponential Runge-Kutta, and commutator free Magnus methods. Journal of Chemical Theory and Computation, 2018, 14 (6): 3040- 3052.
doi: 10.1021/acs.jctc.8b00197 |
27 | AMINE E, HICHAM A, NOURA A. An intelligent model for enterprise resource planning selection based on BP neural network. Proc. of the 2nd Mediterranean Symposium on Smart City Applications, 2017, 212- 222. |
28 | MA L, LIN X, JIANG L H. Differential-weighted global optimum of BP neural network on image classification. Proc. of the International Conference on Information Science and Applications, 2017, 544- 552. |
29 | CHANG X L, LI W J. Evaluation of creative talents in cultural industry based on BP neural network. International Journal of Performability Engineering, 2018, 14 (11): 8- 20. |
30 |
CSATO L. A characterization of the logarithmic least squares method. European Journal of Operational Research, 2019, 276 (1): 212- 216.
doi: 10.1016/j.ejor.2018.12.046 |
31 |
MACIEJ K, MARCIN P. The least squares method for option pricing revisited. Applicationes Mathematicae, 2018, 45 (1): 5- 29.
doi: 10.4064/am2354-2-2018 |
32 | KHAN T, YADAV J S. Adaptive learning based improved performance of activation functions in hidden layer using artificial neural network. International Journal of Engineering and Technology, 2018, 7 (4): 3223- 3227. |
[1] | Aidong Deng, Li Zhao, and Wei Xin. Application of quantum neural networks in localization of acoustic emission [J]. Journal of Systems Engineering and Electronics, 2011, 22(3): 507-512. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||