Journal of Systems Engineering and Electronics ›› 2021, Vol. 32 ›› Issue (2): 297-317.doi: 10.23919/JSEE.2021.000026
• INTELLIGENT OPTIMIZATION AND SCHEDULING • Previous Articles Next Articles
Shiyun LI(), Sheng ZHONG(), Zhi PEI*(), Wenchao YI(), Yong CHEN(), Cheng WANG(), Wenzhu ZHANG()
Received:
2020-10-28
Online:
2021-04-29
Published:
2021-04-29
Contact:
Zhi PEI
E-mail:lishiyun@zjut.edu.cn;zsheng2811@qq.com;peizhi@zjut.edu.cn;yiwenchao@zjut.edu.cn;cy@zjut.edu.cn;cwang@zjut.edu.cn;wzzhang@zjut.edu.cn
About author:
Supported by:
Shiyun LI, Sheng ZHONG, Zhi PEI, Wenchao YI, Yong CHEN, Cheng WANG, Wenzhu ZHANG. Multi-objective reconfigurable production line scheduling for smart home appliances[J]. Journal of Systems Engineering and Electronics, 2021, 32(2): 297-317.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Closely related literature on the reconfigurable production line scheduling"
Study | Multi- objective | Flexible production line | Recon- figurable | Flow shop | Methodology | Application in industry |
KUO et al. 1999 [ | √ | Colored timed petri net+balanced budget work standard algorithm+dispatch rules | Hybrid assembly line in automotive industry | |||
Guo et al. 2006 [ | √ | √ | Bi-level GA | Multi- and mixed-model in an apparel assembly | ||
Huang et al. 2009 [ | √ | √ | √ | ACO+parameter tuning | — | |
Davoudpour et al. 2009 [ | √ | √ | √ | Greedy randomized adaptive search procedure+a non-regular optimization criterion | Hybrid line with sequence-dependent setup times | |
Dudas et al. 2011 [ | √ | √ | √ | Simulation-based innovization | Automotive machining line | |
Liu et al. 2011 [ | √ | √ | Improved PSO | — | ||
Chaube et al. 2012 [ | √ | √ | NSGA-II+Reconfigurable process plan | — | ||
Dai et al. 2013 [ | √ | √ | √ | GA+simulated annealing algorithm (SA) | Metalworking workshop | |
Jolai et al. 2013 [ | √ | √ | √ | SA+ normalized weighted multi-objective decision making (MODM) | — | |
Sheikh et al. 2013 [ | √ | √ | √ | GA+ linear programming | — | |
Tran et al. 2013 [ | √ | √ | √ | Hybrid water flow algorithm+landscape analysis+optimal Pareto solution set | — | |
Naderi et al. 2014 [ | √ | Hybrid PSO | — | |||
Ghaleb et al. 2015 [ | √ | √ | PSO+Tabu search | — | ||
Choi et al. 2015 [ | √ | √ | Dispatching rule based algorithm | Production line in motorcycle field | ||
Dou et al. 2016 [ | √ | √ | √ | NSGA-II+ mixed integer programming | Parts processing simulation for production line | |
Zhao et al. 2017 [ | √ | √ | Object oriented timed colored petri net (OOTCPN)-GASA | Wood manufacturing system | ||
Asghar et al. 2018 [ | √ | √ | GA | Part family production line | ||
Gong et al. 2020 [ | √ | √ | √ | Hybrid evolutionary algorithm (HEA)+variable neighborhood search | Energy-efficient line with worker flexibility | |
Han et al. 2020 [ | √ | √ | Heuristic+self-adaptive evolution operators | — | ||
Hasani et al. 2020 [ | √ | √ | √ | NSGA-II+overall nondominated vector generation (ONVG) | — | |
This work | √ | √ | √ | √ | MOPSO based on Brownian motion (MOPSO-BM) | Smart home appliance manufacturing |
Table 2
Parameters and variables"
Symbol | Description |
i | The ith product in N products, i = 1,2,···, N |
j | The jth part in the |
k | The kth step in the K processes, k = 1,2,···, K |
r | The rth machine in the M machines, r = 1,2,···, M |
Tijkr | The processing time of the process k of the part j of the product i on the machine r |
Sijkr | The start time of the process k of the part j of the product i on the machine r |
Eijkr | The end time of the process k of the part j of the product i on the machine r |
li | The order quantity of product i |
Wh | The collection of each order quantity |
cm | Machine operating cost per unit time |
gm | Inventory cost per unit time |
bm | The cost of efficiency loss per unit time |
δ | The cost adjustment coefficient of efficiency loss per unit time |
dij | The inventory time of the part j of the product i |
Table 3
Multi-objective benchmark function-ZDT series"
Function name | Objective function | Variable bound | D | Property of the Pareto front |
ZDT1 | | | 30 | Convex |
ZDT2 | | | 30 | Nonconvex |
ZDT3 | | | 30 | Convex disconnect |
ZDT4 | | | 10 | Nonconvex |
ZDT6 | | | 10 | Nonconvex |
Table 4
Parameters settings for different algorithms"
Algorithm | Parameter |
MOPSO-BM | |
MOPSO-LFDA | |
NSGA-Ⅱ | |
MOEA/D | |
SMPSO | |
dMOPSO | |
Table 5
Test results of the GD based algorithms"
Function | MOPSO-BM | MOPSO-LFDA | NSGA-Ⅱ | MOEA/D | SMPSO | dMOPSO | |
ZDT1 | Mean | 1.74E-05 | 6.15E-05 | 1.58E-04 | 5.85E-04 | 9.72E-05 | 2.76E-03 |
Standard | 1.23E-05 | 4.02E-05 | 3.55E-05 | 1.83E-04 | 2.40E-05 | 7.11E-04 | |
ZDT2 | Mean | 5.88E-06 | 4.95E-05 | 1.44E-04 | 1.34E-03 | 8.00E-05 | 3.90E-03 |
Standard | 2.47E-06 | 2.76E-05 | 3.55E-05 | 6.51E-04 | 2.53E-05 | 2.09E-03 | |
ZDT3 | Mean | 3.35E-05 | 4.35E-05 | 7.61E-05 | 2.78E-03 | 1.05E-04 | 2.90E-03 |
Standard | 3.97E-06 | 1.34E-05 | 1.91E-05 | 2.97E-03 | 3.67E-05 | 9.57E-04 | |
ZDT4 | Mean | 6.69E-05 | 1.42E-04 | 2.10E-04 | 1.66E-03 | 5.48E-01 | 6.36E-04 |
Standard | 2.01E-05 | 5.47E-05 | 9.73E-05 | 4.98E-04 | 4.10E-01 | 3.10E-04 | |
ZDT6 | Mean | 2.41E-02 | 7.70E-02 | 4.16E-05 | 8.46E-04 | 9.97E-03 | 3.57E-04 |
Standard | 2.23E-02 | 4.04E-02 | 2.84E-05 | 2.86E-04 | 2.45E-02 | 9.35E-04 |
Table 6
Test results of the HV based algorithms"
Function | MOPSO-BM | MOPSO-LFDA | NSGA-Ⅱ | MOEA/D | SMPSO | dMOPSO | |
ZDT1 | Mean | 7.21E-01 | 7.21E-01 | 7.19E-01 | 7.11E-01 | 7.19E-01 | 6.89E-01 |
Standard | 4.51E-05 | 7.26E-05 | 2.09E-04 | 6.90E-03 | 3.12E-04 | 7.88E-03 | |
ZDT2 | Mean | 4.45E-01 | 4.45E-01 | 4.44E-01 | 4.14E-01 | 4.44E-01 | 3.90E-01 |
Standard | 3.15E-05 | 6.39E-05 | 1.62E-04 | 3.47E-02 | 3.20E-04 | 5.99E-02 | |
ZDT3 | Mean | 6.07E-01 | 5.83E-01 | 6.05E-01 | 6.04E-01 | 6.01E-01 | 6.05E-01 |
Standard | 7.20E-05 | 1.52E-04 | 2.25E-02 | 3.51E-02 | 4.05E-03 | 1.10E-02 | |
ZDT4 | Mean | 7.21E-01 | 7.21E-01 | 7.17E-01 | 6.98E-01 | 1.29E-02 | 7.13E-01 |
Standard | 1.49E-04 | 1.52E-04 | 1.26E-03 | 7.99E-03 | 4.59E-02 | 3.61E-03 | |
ZDT6 | Mean | 3.90E-01 | 3.89E-01 | 3.88E-01 | 3.81E-01 | 3.88E-01 | 3.87E-01 |
Standard | 2.57E-04 | 7.67E-05 | 3.19E-04 | 2.48E-03 | 2.09E-04 | 4.98E-03 |
Table 7
Scheduling results for different algorithms on the Xia and Wu datasets"
Problem (n×m) | Objective | AL+CGA | PSO+SA | moGA | hGA | MOPSO-BM | |||
Result | Pop size | ||||||||
8×8 | f1 | 15 | 16 | 15 | 16 | 15 | 14 | 15 | 300 |
f2 | 12 | 13 | 14 | 12 | 12 | ||||
f3 | 79 | 75 | 75 | 73 | 73 | 77 | 75 | ||
10×10 | f1 | 7 | 7 | 7 | 7 | 7 | 300 | ||
f2 | 5 | 6 | 5 | 5 | 5 | ||||
f3 | 45 | 44 | 43 | 43 | 43 | ||||
15×10 | f1 | 24 | 12 | 11 | 11 | 300 | |||
f2 | 11 | 11 | 11 | 11 | |||||
f3 | 91 | 91 | 91 | 91 |
Table 8
Processing information for the jobs with respect to equipment"
Job | Process | Processing information | Job | Process | Processing information | |
J1 | O1,1 | SK539-lower cover | J19 | O19,1 | Laser lettering lower cover | |
J2 | O2,1 | SK539-upper cover | O19,2 | Insert L pole | ||
J3 | O3,1 | SK504-lower cover | O19,3 | Insert N pole | ||
J4 | O4,1 | SK504-upper cover | O19,4 | Install PCB | ||
J5 | O5,1 | SK517-lower cover | O19,5 | Welding L, N pole | ||
J6 | O6,1 | SK517-upper cover | O19,6 | Insert clip | ||
J7 | O7,1 | Button | O19,7 | Welding clip | ||
J8 | O8,1 | SK539-L pole | O19,8 | Test continuity | ||
J9 | O9,1 | SK539-N pole | O19,9 | Attach the cover | ||
J10 | O10,1 | SK504-L pole | O19,10 | Lock screw | ||
J11 | O11,1 | SK504-N pole | O19,11 | Test function | ||
J12 | O12,1 | SK517-L pole | J20 | O20,1 | Laser lettering lower cover | |
J13 | O13,1 | SK517-N pole | O20,2 | Welding WIFI module | ||
J14 | O14,1 | Clip | O20,3 | Insert L pole | ||
J15 | O15,1 | SK539-PCB | O20,4 | Insert N pole | ||
J16 | O16,1 | SK504-PCB | O20,5 | Install PCB | ||
J17 | O17,1 | SK517-PCB | O20,6 | Welding L, N pole | ||
J18 | O18,1 | Laser lettering lower cover | O20,7 | Insert clip | ||
O18,2 | Insert L pole | O20,8 | Welding clip | |||
O18,3 | Insert N pole | O20,9 | Test continuity | |||
O18,4 | Install PCB | O20,10 | Attach the upper cover | |||
O18,5 | Welding L, N pole | O20,11 | Lock screw | |||
O18,6 | Insert clip | O20,12 | Test function | |||
O18,7 | Welding clip | Final Assembly | Counting and packing (Beyond the scope of this paper) | |||
O18,8 | Test continuity | |||||
O18,9 | Attach the upper cover | |||||
O18,10 | Ultrasonic welding | |||||
O18,11 | Test function |
Table 10
Processing time of each process (a) s"
Job | Process | M1 | M2 | M3 | M4 | M5 | M6 |
J1 | O1,1 | 9 | 8 | X | X | X | X |
J2 | O2,1 | 9 | 7 | X | X | X | X |
J3 | O3,1 | 6 | 5 | X | X | X | X |
J4 | O4,1 | 6 | 7 | X | X | X | X |
J5 | O5,1 | 7 | 7 | X | X | X | X |
J6 | O6,1 | 7 | 7 | X | X | X | X |
J7 | O7,1 | 9 | 9 | X | X | X | X |
J8 | O8,1 | X | X | 6 | 7 | X | X |
J9 | O9,1 | X | X | 5 | 6 | X | X |
J10 | O10,1 | X | X | 6 | 9 | X | X |
J11 | O11,1 | X | X | 6 | 6 | X | X |
J12 | O12,1 | X | X | 6 | 9 | X | X |
J13 | O13,1 | X | X | 5 | 8 | X | X |
J14 | O14,1 | X | X | 6 | 6 | X | X |
J15 | O15,1 | X | X | X | X | 9 | 5 |
J16 | O16,1 | X | X | X | X | 8 | 9 |
J17 | O17,1 | X | X | X | X | 8 | 9 |
Table 11
Processing time of each process (b) s"
Machine number | Process number | J18 | J19 | J20 |
M7 | 1 | 7 | 8 | 6 |
M8 | 2 | 9 | 9 | 10 |
M9 | 2 | 10 | 7 | 11 |
M10 | 3 | 11 | 14 | 12 |
M11 | 3 | 12 | 15 | 9 |
M12 | 4 | 9 | 11 | 10 |
M13 | 4 | 10 | 8 | 11 |
M14 | 5 | 11 | 10 | 9 |
M15 | 5 | 8 | 12 | 8 |
M16 | 6 | 3 | 4 | 4 |
M17 | 7 | 9 | 8 | 10 |
M18 | 7 | 7 | 11 | 8 |
M19 | 8 | 5 | 6 | 7 |
M20 | 9 | 12 | 11 | 12 |
M21 | 9 | 9 | 10 | 14 |
M22 | 10 | 7 | 8 | 5 |
M23 | 11 | 6 | 7 | 6 |
M24 | 12 | X | X | 6 |
Table 12
Parameters settings in different algorithms"
Algorithm | Parameter | Setting |
MOPSO-BM | | |
NSGA-Ⅱ | | |
dMOPSO | |
1 |
BAI D Y, XUE H Y, et al Effective algorithms for single-machine learning-effect scheduling to minimize completion-time-based criteria with release dates. Expert Systems with Applications, 2020, 156, 113445.
doi: 10.1016/j.eswa.2020.113445 |
2 |
KUO C H, HUANG H P, WEI K C System modeling and real-time simulator for highly model-mixed assembly systems. Journal of Manufacturing Science and Engineering—Transactions of the ASME, 1999, 121 (2): 282- 289.
doi: 10.1115/1.2831217 |
3 | GUO Z X, WONG W K, LEUNG S Y S, et al A bi-level genetic algorithm for multi-objective scheduling of multi- and mixed-model apparel assembly lines. Multimedia Modeling, 2006, 4304, 934- 941. |
4 |
HUANG R H, YANG C L Solving a multi-objective overlapping flow-shop scheduling. International Journal of Advanced Manufacturing Technology, 2009, 42 (9): 955- 962.
doi: 10.1007/s00170-008-1652-9 |
5 | DAVOUDPOUR H, ASHRAFI M Solving multi-objective SDST flexible flow shop using GRASP algorithm. International Journal of Advanced Manufacturing Technology, 2009, 44 (7): 737- 747. |
6 |
DUDAS C, FRANTZEN M, NG A H C A synergy of multi-objective optimization and data mining for the analysis of a flexible flow shop. Robotics and Computer-Integrated Manufacturing, 2011, 27 (4): 687- 695.
doi: 10.1016/j.rcim.2010.12.005 |
7 | LIU Q M, DONG M Improved particle swarm optimization algorithm application of the variable batch flow-shop problem. Advanced Science Letters, 2011, 4 (6/7): 2369- 2373. |
8 |
CHAUBE A, BENYOUCEF L, TIWARI M K An adapted NSGA-2 algorithm based dynamic process plan generation for a reconfigurable manufacturing system. Journal of Intelligent Manufacturing, 2012, 23 (4): 1141- 1155.
doi: 10.1007/s10845-010-0453-9 |
9 |
DAI M, TANG D B, GIRET A, et al Energy-efficient scheduling for a flexible flow shop using an improved genetic-simulated annealing algorithm. Robotics and Computer-Integrated Manufacturing, 2013, 29 (5): 418- 429.
doi: 10.1016/j.rcim.2013.04.001 |
10 | JOLAI F, ASEFI H, RABIEE M, et al Bi-objective simulated annealing approaches for no-wait two-stage flexible flow shop scheduling problem. Scientia Iranica, 2013, 20 (3): 861- 872. |
11 |
SHEIKH S Multi-objective flexible flow lines with due window, time lag, and job rejection. International Journal of Advanced Manufacturing Technology, 2013, 64 (9−12): 1423- 1433.
doi: 10.1007/s00170-012-4112-5 |
12 |
TRAN T H, NG K M A hybrid water flow algorithm for multi-objective flexible flow shop scheduling problems. Engineering Optimization, 2013, 45 (4): 483- 502.
doi: 10.1080/0305215X.2012.685072 |
13 |
NADERI B, GOHARI S, YAZDANI M Hybrid flexible flowshop problems: models and solution methods. Applied Mathematical Modelling, 2014, 38 (24): 5767- 5780.
doi: 10.1016/j.apm.2014.04.012 |
14 |
GHALEB M A, SURYAHATMAJA U S, ALHARKAN I M Metaheuristics for two-stage no-wait flexible flow shop scheduling problem. Proc. of the International Conference on Industrial Engineering and Operations Management, 2015, 1- 9.
doi: 10.1109/IEOM.2015.7093943 |
15 |
CHOI Y C Dispatching rule-based scheduling algorithms in a single machine with sequence-dependent setup times and energy requirements. Procedia CIRP, 2016, 41, 135- 140.
doi: 10.1016/j.procir.2015.12.109 |
16 |
DOU J P, LI J, SU C Bi-objective optimization of integrating configuration generation and scheduling for reconfigurable flow lines using NSGA-II. International Journal of Advanced Manufacturing Technology, 2016, 86 (5−8): 1945- 1962.
doi: 10.1007/s00170-015-8291-8 |
17 | ZHAO Y R, FENG X Y, SHI L P, et al. The study on reconfigurable algorithm of the wood flexible manufacturing system based on OOTCPN-GASA. Proc. of the 2nd International Conference on Control and Robotics Engineering, 2017. DOI: 10.1109/ICCRE.2017.7935044. |
18 |
ASGHAR E, ZAMAN U K U, BAQAI A A, et al Optimum machine capabilities for reconfigurable manufacturing systems. International Journal of Advanced Manufacturing Technology, 2018, 95 (9−12): 4397- 4417.
doi: 10.1007/s00170-017-1560-y |
19 |
GONG G L, CHIONG R, DENG Q W, et al Energy-efficient flexible flow shop scheduling with worker flexibility. Expert Systems with Applications, 2020, 141, 112902.
doi: 10.1016/j.eswa.2019.112902 |
20 |
HAN Y Y, LI J Q, SANG H Y, et al Discrete evolutionary multi-objective optimization for energy-efficient blocking flow shop scheduling with setup time. Applied Soft Computing, 2020, 93, 106343.
doi: 10.1016/j.asoc.2020.106343 |
21 |
HASANI A, HOSSEINI S M H A bi-objective flexible flow shop scheduling problem with machine-dependent processing stages: trade-off between production costs and energy consumption. Applied Mathematics and Computation, 2020, 386, 125533.
doi: 10.1016/j.amc.2020.125533 |
22 |
BOYSEN N, FLIEDNER M, SCHOLL A Sequencing mixed-model assembly lines: survey, classification and model critique. European Journal of Operational Research, 2009, 192 (2): 349- 373.
doi: 10.1016/j.ejor.2007.09.013 |
23 | MOORE J, CHAPMAN R. Application of particle swarm to multi-objective optimization. Auburn, Alabama: Auburn University, 1999. |
24 |
GUAN T H, HAN F, HAN H A modified multi-objective particle swarm optimization based on Levy flight and double-archive mechanism. IEEE Access, 2019, 7, 183444- 183467.
doi: 10.1109/ACCESS.2019.2960472 |
25 |
KENNEDY J, EBERHART R Particle swarm optimization. Proc. of the IEEE International Conference on Neural Networks, 1995, 4, 1942- 1948.
doi: 10.1109/ICNN.1995.488968 |
26 |
COELHO L D S, AYALA V H, ALOTTO P A multi-objective Gaussian particle swarm approach applied to electromagnetic optimization. IEEE Trans. on Magnetics, 2010, 46 (8): 3289- 3292.
doi: 10.1109/TMAG.2010.2047250 |
27 |
AL-DUWAISH H N Identification of Hammerstein models with known nonlinearity structure using particle swarm optimization. Arabian Journal for Science and Engineering, 2006, 36 (7): 1269- 1276.
doi: 10.1007%2Fs13369-011-0120-2 |
28 |
JIANG S H, WANG Y, JI Z C A new design method for adaptive IIR system identification using hybrid particle swarm optimization and gravitational search algorithm. Nonlinear Dynamics, 2015, 79 (4): 2553- 2576.
doi: 10.1007/s11071-014-1832-0 |
29 |
ZHAO J, SUN J, LAI C H, et al An improved quantum-behaved particle swarm optimization for multi-peak optimization problem. International Journal of Computer Mathematics, 2011, 88 (3): 517- 532.
doi: 10.1080/00207160903521501 |
30 |
COELLO C A C, PULIDO G T, LECHUGA M S Handling multiple objectives with particle swarm optimization. IEEE Trans. on Evolutionary Computation, 2004, 8 (3): 256- 279.
doi: 10.1109/TEVC.2004.826067 |
31 | YANG J M, MU X W, CHE H J, et al. Improved multi-objective particle swarm optimization algorithm based on multiple strategies. Control and Decision, 2017, 32(3): 435–42. (in Chinese) |
32 | KIAN S L, BUYAMIN S, AHMAD A, et al An improved leader guidance in multi-objective particle swarm optimization. Proc. of the 6th Asia Modelling Symposium, 2012, 34- 39. |
33 | FAN J S An improving multi-objective particle swarm optimization. Web Information Systems and Mining, 2010, 6318, 1- 6. |
34 |
ZHOU A M, QU B Y, LI H, et al Multi-objective evolutionary algorithms: a survey of the state of the art. Swarm and Evolutionary Computation, 2011, 1 (1): 32- 49.
doi: 10.1016/j.swevo.2011.03.001 |
35 | ZEINALZADEH A, MOHAMMADI Y, MORADI M H Optimal multi-objective placement and sizing of multiple DGs and shunt capacitor banks simultaneously considering load uncertainty via MOPSO approach. International Journal of Electrical Power & Energy Systems, 2015, 67, 336- 349. |
36 |
TAVANA M, LI Z J, MOBIN M, et al Multi-objective control chart design optimization using NSGA-III and MOPSO enhanced with DEA and TOPSIS. Expert Systems with Applications, 2016, 50, 17- 39.
doi: 10.1016/j.eswa.2015.11.007 |
37 | SUN Y, GAO Y L. A multi-objective particle swarm optimization algorithm based on Gaussian mutation and an improved learning strategy. Mathematics, 2019. DOI: 10.3390/math7020148. |
38 |
LEE C H, LEE Y C Nonlinear systems design by a novel fuzzy neural system via hybridization of electromagnetism-like mechanism and particle swarm optimisation algorithms. Information Sciences, 2012, 186, 59- 72.
doi: 10.1016/j.ins.2011.09.036 |
39 | HIGASHI N, IBA H Particle swarm optimization with Gaussian mutation. Proc. of the IEEE Swarm Intelligence Symposium, 2003, 72- 79. |
40 |
HAN Z H, ZHANG Q An improved compact genetic algorithm for scheduling problems in a flexible flow shop with a multi-queue buffer. Processes, 2019, 7 (5): 302.
doi: 10.3390/pr7050302 |
41 |
ABDECHIRI M, MEYBODI M R, BAHRAMI H Gases Brownian motion optimization: an algorithm for optimization (GBMO). Applied Soft Computing, 2013, 13 (5): 2932- 2946.
doi: 10.1016/j.asoc.2012.03.068 |
42 | ACI C I, GULCAN H A modified dragonfly optimization algorithm for single- and multiobjective problems using Brownian motion. Computational Intelligence and Neuroscience, 2019, 2019 (2): 1- 17. |
43 | HIDA T. Brownian motion. New York: Springer, 1980. |
44 | LIU J J, WU C Z, CAO J, et al A binary differential search algorithm for the 0-1 multidimensional knapsack problem. Applied Mathematical Modelling, 2016, 40 (23/24): 9788- 9805. |
45 |
HAN L, ROMERO C E, YAO Z Economic dispatch optimization algorithm based on particle diffusion. Energy Conversion and Management, 2015, 105, 1251- 1260.
doi: 10.1016/j.enconman.2015.08.071 |
46 |
ZITZLER E, DEB K, THIELE L Comparison of multiobjective evolutionary algorithms: empirical results. Evolutionary Computation, 2000, 8 (2): 173- 195.
doi: 10.1162/106365600568202 |
47 |
KACEM I, HAMMADI S, BORNE P Approach by localization and multi-objective evolutionary optimization for flexible job-shop scheduling problems. IEEE Trans. on Systems, Man, and Cybernetics—Part C, 2002, 32 (1): 1- 13.
doi: 10.1109/TSMCC.2002.1009117 |
48 |
KACEM I, HAMMADI S, BORNE P Pareto-optimality approach for flexible job-shop scheduling problems: hybridization of evolutionary algorithms and fuzzy logic. Mathematics and Computers in Simulation, 2002, 60 (3−5): 245- 276.
doi: 10.1016/S0378-4754(02)00019-8 |
49 | XIA W J, WU Z M An effective hybrid optimization approach for multi-objective flexible job-shop scheduling problem. Computers & Industrial Engineering, 2005, 48 (2): 409- 425. |
50 | VELDHUIZEN D A V, LAMONT G B. Evolutionary computation and convergence to a Pareto front. Late Breaking Papers at the Genetic Programming Conference, 1998: 221−228. |
51 | VELDHUIZEN D A V, LAMONT G B Multi-objective evolutionary algorithm test suites. Proc. of the ACM symposium on Applied Computing, 1999, 351- 357. |
52 |
DEB K, PRATAP A, AGARWAL S A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. on Evolutionary Computation, 2002, 6 (2): 182- 197.
doi: 10.1109/4235.996017 |
53 |
ZHANG Q F, LI H MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. on Evolutionary Computation, 2007, 11 (6): 712- 731.
doi: 10.1109/TEVC.2007.892759 |
54 | NEBRO A J, DURILLO J J, GARCIA-NIETO J, et al SMPSO: a new PSO-based metaheuristic for multi-objective optimization. Proc. of the IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making, 2009, 66- 73. |
55 | MARTINEZ S Z, COELLO C A C A multi-objective particle swarm optimizer based on decomposition. Proc. of the 13th Annual Genetic and Evolutionary Computation Conference, 2011, 69- 76. |
56 |
TIAN Y, CHENG R, ZAHNG X Y, et al PlatEMO: a MATLAB platform for evolutionary multi-objective optimization. IEEE Computational Intelligence Magazine, 2017, 12 (4): 73- 87.
doi: 10.1109/MCI.2017.2742868 |
57 | ZHANG H P, GEN M Multistage-based genetic algorithm for flexible job-shop scheduling problem. Journal of Complexity International, 2005, 11, 223- 232. |
58 | GAO J, SUN L Y, GEN M S A hybrid genetic and variable neighborhood descent algorithm for flexible job shop scheduling problems. Computers & Operations Research, 2008, 35 (9): 2892- 2907. |
[1] | Jiaxin HU, Leping YANG, Huan HUANG, Yanwei ZHU. Optimal reconfiguration of constellation using adaptive innovation driven multiobjective evolutionary algorithm [J]. Journal of Systems Engineering and Electronics, 2021, 32(6): 1527-1538. |
[2] | Zining WANG, Min LIN, Xiaogang TANG, Kefeng GUO, Shuo HUANG, Ming CHENG. Multi-objective robust secure beamforming for cognitive satellite and UAV networks [J]. Journal of Systems Engineering and Electronics, 2021, 32(4): 789-798. |
[3] | Jianjiang WANG, Xuejun HU, Chuan HE. Reactive scheduling of multiple EOSs under cloud uncertainties: model and algorithms [J]. Journal of Systems Engineering and Electronics, 2021, 32(1): 163-177. |
[4] | Zhen XU, Enze ZHANG, Qingwei CHEN. Rotary unmanned aerial vehicles path planning in rough terrain based on multi-objective particle swarm optimization [J]. Journal of Systems Engineering and Electronics, 2020, 31(1): 130-141. |
[5] | Yan'gang LIANG, Zheng QIN. A decision support system for satellite layout integrating multi-objective optimization and multi-attribute decision making [J]. Journal of Systems Engineering and Electronics, 2019, 30(3): 535-544. |
[6] | Jiale GAO, Qinghua XING, Chengli FAN, Zhibing LIANG. Double adaptive selection strategy for MOEA/D [J]. Journal of Systems Engineering and Electronics, 2019, 30(1): 132-143. |
[7] | Jiting Li, Sheng Zhang, Xiaolu Liu, and Renjie He. Multi-objective evolutionary optimization for geostationary orbit satellite mission planning [J]. Systems Engineering and Electronics, 2017, 28(5): 934-945. |
[8] | Ying Zhang, Rennong Yang, Jialiang Zuo, and Xiaoning Jing. Enhancing MOEA/D with uniform population initialization, weight vector design and adjustment using uniform design [J]. Journal of Systems Engineering and Electronics, 2015, 26(5): 1010-1022. |
[9] | Haipeng Ren* and Yang Zhao. Immune particle swarm optimization of linear frequency modulation in acoustic communication [J]. Systems Engineering and Electronics, 2015, 26(3): 450-456. |
[10] | Lixia Han, Shujuan Jiang, and Shaojiang Lan. Novel electromagnetism-like mechanism method for multiobjective optimization problems [J]. Journal of Systems Engineering and Electronics, 2015, 26(1): 182-. |
[11] | Wei Jingxuan & Wang Yuping. Multi-objective fuzzy particle swarm optimization based on elite archiving and its convergence [J]. Journal of Systems Engineering and Electronics, 2008, 19(5): 1035-1040. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||