
Journal of Systems Engineering and Electronics ›› 2021, Vol. 32 ›› Issue (2): 473-486.doi: 10.23919/JSEE.2021.000040
• CONTROL THEORY AND APPLICATION • Previous Articles Next Articles
					
													Xuhao GUI(
), Junfeng ZHANG*(
), Zihan PENG(
)
												  
						
						
						
					
				
Received:2020-06-02
															
							
															
							
															
							
																	Online:2021-04-29
															
							
																	Published:2021-04-29
															
						Contact:
								Junfeng ZHANG   
																	E-mail:ShowhowGui@outlook.com;zhangjunfeng@nuaa.edu.cn;fluff9797@163.com
																					About author:Supported by:Xuhao GUI, Junfeng ZHANG, Zihan PENG. Trajectory clustering for arrival aircraft via new trajectory representation[J]. Journal of Systems Engineering and Electronics, 2021, 32(2): 473-486.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Statistical analysis of flight time distribution min"
| Fix | Group | Mean | Median | Confidence level (95% ) | Confidence level (75%) | |||||
| Lower limit | Upper limit | Interval | Lower limit | Upper limit | Interval | |||||
| BK | Total | 16.3 | 16.1 | 13.4 | 19.3 | 5.9 | 14.6 | 18.1 | 3.5 | |
| C1 | 15.6 | 15.5 | 13.7 | 17.4 | 3.7 | 14.5 | 16.6 | 2.1 | ||
| C2 | 16.6 | 16.5 | 14.5 | 18.6 | 4.1 | 15.4 | 17.7 | 2.3 | ||
| C3 | 18.0 | 18.1 | 15.9 | 20.1 | 4.2 | 16.8 | 19.2 | 2.4 | ||
| C4 | 20.8 | 20.6 | 17.7 | 23.8 | 6.1 | 19.0 | 22.6 | 3.6 | ||
| C5 | 19.5 | 19.8 | 16.9 | 22.0 | 5.1 | 18.0 | 21.0 | 3.0 | ||
| SASAN | Total | 21.3 | 21.0 | 17.4 | 25.2 | 7.8 | 19.0 | 23.6 | 4.6 | |
| C1 | 19.6 | 19.4 | 16.4 | 22.7 | 6.3 | 17.7 | 21.4 | 3.7 | ||
| C2 | 21.1 | 20.9 | 18.2 | 24.1 | 5.9 | 19.4 | 22.9 | 3.5 | ||
| C3 | 20.7 | 20.5 | 17.8 | 23.6 | 5.8 | 19.0 | 22.4 | 3.4 | ||
| C4 | 23.5 | 23.7 | 20.7 | 26.3 | 5.6 | 21.8 | 25.1 | 3.3 | ||
| C5 | 24.1 | 24.5 | 20.3 | 27.9 | 7.6 | 21.9 | 26.3 | 4.4 | ||
| 1 |  
											KISTAN T, GARDI A, SABATINI R, et al An evolutionary outlook of air traffic flow management techniques. Progress in Aerospace Sciences, 2017, 88, 15- 42. 
																							 doi: 10.1016/j.paerosci.2016.10.001  | 
										
| 2 | ALESSANDRO G, ROBERTO S, TREVOR K Multi-objective 4D trajectory optimization for integrated avionics and air traffic management systems. IEEE Trans. on Aerospace and Electronic Systems, 2018, 55 (1): 170- 181. | 
| 3 |  
											LI M Z, RYERSON M S Reviewing the DATAS of aviation research data: diversity, availability, tractability, applicability, and sources. Journal of Air Transport Management, 2019, 75, 111- 130. 
																							 doi: 10.1016/j.jairtraman.2018.12.004  | 
										
| 4 | REHM F. Clustering of flight tracks. Proc. of the American Institute of Aeronautics and Astronautics, 2010, 1- 9. | 
| 5 |  
											GARIEL M, SRIVASTAVA A N, FERON E Trajectory clustering and an application to airspace monitoring. IEEE Trans. on Intelligent Transportation Systems, 2011, 12 (4): 1511- 1524. 
																							 doi: 10.1109/TITS.2011.2160628  | 
										
| 6 | ANDRIENKO G, ANDRIENKO N, FUCHS G, et al. Clustering trajectories by relevant parts for air traffic analysis. IEEE Trans. on Visualization and Computer Graphics, 2017, 24 (1): 34- 44. | 
| 7 |  
											OLIVE X, MORIO J Trajectory clustering of air traffic flows around airports. Aerospace Science and Technology, 2019, 84, 776- 781. 
																							 doi: 10.1016/j.ast.2018.11.031  | 
										
| 8 |  
											MARZUOLI A, GARIEL M, VELA A, et al. Data-based modeling and optimization of en route traffic. Journal of Guidance, Control, and Dynamics, 2014, 37 (6): 1930- 1945. 
																							 doi: 10.2514/1.G000010  | 
										
| 9 |  
											BOMBELLI A, SOLER L, TRUMBAUER E, et al. Strategic air traffic planning with Fréchet distance aggregation and rerouting. Journal of Guidance, Control, and Dynamics, 2017, 40 (5): 1117- 1129. 
																							 doi: 10.2514/1.G002308  | 
										
| 10 |  
											BOMBELLI A, TORNÉ A S, TRUMBAUER E, et al. Improved clustering for route-based eulerian air traffic modeling. Journal of Guidance, Control, and Dynamics, 2019, 42 (5): 1064- 1077. 
																							 doi: 10.2514/1.G003939  | 
										
| 11 |  
											GERDES I, TEMME A, SCHULTZ M. Dynamic airspace sectorisation for flight-centric operations. Transportation Research Part C: Emerging Technologies, 2018, 95, 460- 480. 
																							 doi: 10.1016/j.trc.2018.07.032  | 
										
| 12 | MURÇA M C R, HANSMAN R J, LI L, et al. Flight trajectory data analytics for characterization of air traffic flows: a comparative analysis of terminal area operations between New York, Hong Kong and Sao Paulo. Transportation Research Part C: Emerging Technologies, 2019, 97, 324- 347. | 
| 13 | MURCA M C R, HANSMAN R J Identification, characterization, and prediction of traffic flow patterns in multi-airport systems. IEEE Trans. on Intelligent Transportation Systems, 2018, 20 (5): 1683- 1696. | 
| 14 |  
											CARMONA M A A, NIETO F S, GALLEGO C E V A data-driven methodology for characterization of a terminal manoeuvring area in multi-airport systems. Transportation Research Part C: Emerging Technologies, 2020, 111, 185- 209. 
																							 doi: 10.1016/j.trc.2019.12.011  | 
										
| 15 |  
											HONG S, LEE K Trajectory prediction for vectored area navigation arrivals. Journal of Aerospace Information Systems, 2015, 12 (7): 490- 502. 
																							 doi: 10.2514/1.I010245  | 
										
| 16 |  
											WANG Z Y, LIANG M, DELAHAYE D A hybrid machine learning model for short-term estimated time of arrival prediction in terminal manoeuvring area. Transportation Research Part C: Emerging Technologies, 2018, 95, 280- 294. 
																							 doi: 10.1016/j.trc.2018.07.019  | 
										
| 17 | ZHENG Y Trajectory data mining: an overview. ACM Trans. on Intelligent Systems and Technology, 2015, 6 (3): 1- 41. | 
| 18 |  
											YUAN G, SUN P H, ZHAO J, et al. A review of moving object trajectory clustering algorithms. Artificial Intelligence Review, 2017, 47 (1): 123- 144. 
																							 doi: 10.1007/s10462-016-9477-7  | 
										
| 19 |  
											MORRIS B T, TRIVEDI M M Trajectory learning for activity understanding: unsupervised, multilevel, and long-term adaptive approach. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2011, 33 (11): 2287- 2301. 
																							 doi: 10.1109/TPAMI.2011.64  | 
										
| 20 |  
											ZHAO L B, SHI G Y A trajectory clustering method based on Douglas-Peucker compression and density for marine traffic pattern recognition. Ocean Engineering, 2019, 172, 456- 467. 
																							 doi: 10.1016/j.oceaneng.2018.12.019  | 
										
| 21 |  
											SALAUN E, GARIEL M, VELA A E, et al. Aircraft proximity maps based on data-driven flow modeling. Journal of Guidance, Control, and Dynamics, 2012, 35 (2): 563- 577. 
																							 doi: 10.2514/1.53859  | 
										
| 22 | LEE J G, HAN J, WHANG K Y Trajectory clustering: a partition-and-group framework. Proc. of the ACM SIGMOD International Conference on Management of Data, 2007, 593- 604. | 
| 23 |  
											MAHBOUBI Z, KOCHENDERFER M J Learning traffic patterns at small airports from flight tracks. IEEE Trans. on Intelligent Transportation Systems, 2017, 18 (4): 917- 926. 
																							 doi: 10.1109/TITS.2016.2598064  | 
										
| [1] | Jun TANG, Gang LIU, Qingtao PAN. Review on artificial intelligence techniques for improving representative air traffic management capability [J]. Journal of Systems Engineering and Electronics, 2022, 33(5): 1123-1134. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||