Journal of Systems Engineering and Electronics ›› 2022, Vol. 33 ›› Issue (1): 156-169.doi: 10.23919/JSEE.2022.000016
• SYSTEMS ENGINEERING • Previous Articles Next Articles
Tianwei WU1,2(), Siguang AN1,2,*(), Jianqiang HAN1,2(), Nanying SHENTU1,2()
Received:
2020-12-09
Accepted:
2021-12-13
Online:
2022-02-18
Published:
2022-02-22
Contact:
Siguang AN
E-mail:554729930@qq.com;annsg@126.com;hjqsmx@sina.com;stnying@163.com
About author:
Supported by:
Tianwei WU, Siguang AN, Jianqiang HAN, Nanying SHENTU. An ε -domination based two-archive 2 algorithm for many-objective optimization[J]. Journal of Systems Engineering and Electronics, 2022, 33(1): 156-169.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 2
Average values of IGD results of the compared algorithms on DTLZ1"
Problem | Number of objectives | ε-Two_Arch2 | Two_Arch2 | NSGA-III | PICEA-g | GrEA | SPEA2+SDE |
DTLZ1 | 4 | 0.2615(5) | 0.2734(6) | 0.0401(1) | 0.2608(4) | 0.1336(3) | 0.0418(2) |
5 | 0.2518(4) | 0.2700(5) | 0.0620(2) | 0.2991(6) | 0.1985(3) | 0.0619(1) | |
6 | 0.2420(3) | 0.2662(5) | 0.1176(2) | 0.3291(6) | 0.2521 (4) | 0.0793(1) | |
7 | 0.2572(3) | 0.2636(4) | 0.1078(2) | 0.3857 (6) | 0.3273(5) | 0.0981(1) | |
8 | 0.2517(3) | 0.2621(4) | 0.1304(2) | 0.3979(6) | 0.3891(5) | 0.1068(1) | |
9 | 0.2605(3) | 0.2677(4) | 0.2476(2) | 0.4467(6) | 0.4012(5) | 0.1367(1) | |
10 | 0.2732(3) | 0.2736(4) | 0.1098(1) | 0.3697(5) | 0.3937(6) | 0.1204(2) |
Table 3
Average values of IGD results of the compared algorithms on DTLZ2"
Problem | Number of objectives | ε-Two_Arch2 | Two_Arch2 | NSGA-III | PICEA-g | GrEA | SPEA2+SDE |
DTLZ2 | 4 | 0.1055(1) | 0.1377(4) | 0.1161(2) | 0.1880(6) | 0.1247 (3) | 0.1418(5) |
5 | 0.1394(1) | 0.2183(5) | 0.1897(2) | 0.2583(6) | 0.1902(3) | 0.2089(4) | |
6 | 0.1736(1) | 0.2940(5) | 0.2572(3) | 0.3218(6) | 0.2549(2) | 0.2665(4) | |
7 | 0.2029(1) | 0.3627(5) | 0.3318(3) | 0.4101(6) | 0.3262(2) | 0.3331(4) | |
8 | 0.2273(1) | 0.4248(5) | 0.3558(3) | 0.4609(6) | 0.4015(4) | 0.3455(2) | |
9 | 0.2331(1) | 0.4804(3) | 0.4924(4) | 0.7169(5) | 0.8121(6) | 0.4140(2) | |
10 | 0.2808(1) | 0.5192(5) | 0.3806(3) | 0.4513(4) | 0.9781(6) | 0.3561(2) |
Table 4
Average values of IGD results of the compared algorithms on DTLZ3"
Problem | Number of objectives | ε-Two_Arch2 | Two_Arch2 | NSGA-III | PICEA-g | GrEA | SPEA2+SDE |
DTLZ3 | 4 | 0.0958(1) | 0.1335(3) | 0.1170(2) | 0.5167(5) | 0.8396(6) | 0.1409(4) |
5 | 0.1384(1) | 0.2091(3) | 0.1927(2) | 0.5899(5) | 0.8499(6) | 0.2071(4) | |
6 | 0.1815(1) | 0.2827(3) | 1.3700(6) | 0.7024(4) | 1.1058(5) | 0.2683(2) | |
7 | 0.2069(1) | 0.3481(3) | 0.7919(4) | 0.8489(5) | 1.9463(6) | 0.3425(2) | |
8 | 0.2200(1) | 0.4129(3) | 1.8506(5) | 0.8660(4) | 3.7406(6) | 0.3454(2) | |
9 | 0.2409(1) | 0.4692(3) | 8.7805(6) | 0.9951(4) | 2.5892(5) | 0.4314(2) | |
10 | 0.2585(1) | 0.5175(3) | 1.6335(6) | 0.9302(5) | 1.5928(5) | 0.3538(2) |
Table 5
Average values of IGD results of the compared algorithms on DTLZ4"
Problem | Number of objectives | ε-Two_Arch2 | Two_Arch2 | NSGA-III | PICEA-g | GrEA | SPEA2+SDE |
DTLZ4 | 4 | 0.1015(1) | 0.1388(2) | 0.1498(4) | 0.2107(6) | 0.1932(5) | 0.1438(3) |
5 | 0.1309(1) | 0.2222(4) | 0.1953(3) | 0.3015(6) | 0.1926(2) | 0.2282(5) | |
6 | 0.1621(1) | 0.3016(4) | 0.3032(5) | 0.3402(6) | 0.2570(2) | 0.2811(3) | |
7 | 0.1873(1) | 0.3727(5) | 0.3647(4) | 0.4894(6) | 0.3071(2) | 0.3408(3) | |
8 | 0.1890(1) | 0.4360(6) | 0.3944(4) | 0.4261(5) | 0.3855(3) | 0.3499(2) | |
9 | 0.2596(1) | 0.4997(5) | 0.4695(3) | 0.5554(6) | 0.4862(4) | 0.4424(2) | |
10 | 0.3079(1) | 0.5349(5) | 0.4077(3) | 0.4107(4) | 0.5389(6) | 0.3714(2) |
Table 6
Average values of IGD results of the compared algorithms on WFG1"
Problem | Number of objectives | ε-Two_Arch2 | Two_Arch2 | NSGA-III | PICEA-g | GrEA | SPEA2+SDE |
WFG1 | 4 | 1.9249(6) | 1.3681(5) | 0.2915(1) | 0.3620(3) | 0.4261(4) | 0.3124(2) |
5 | 2.1207(6) | 1.6050(5) | 0.4355(1) | 0.5168(3) | 0.5635(4) | 0.4803(2) | |
6 | 2.3325(6) | 1.7400(5) | 0.6402(1) | 0.7368(3) | 0.8636(4) | 0.6932(2) | |
7 | 2.5507(6) | 2.0164(5) | 0.8739(1) | 0.9932(3) | 1.2685(4) | 0.9732(2) | |
8 | 2.8387(6) | 2.1617(5) | 1.0830(1) | 1.3254(2) | 1.9771(4) | 1.4427(3) | |
9 | 3.2123(6) | 2.4915(5) | 1.2732(1) | 2.1385(4) | 2.1214(3) | 1.7623(2) | |
10 | 3.4066(6) | 2.7621(4) | 1.3463(1) | 2.8271(5) | 2.1551(3) | 1.8376(2) |
Table 7
Average values of IGD results of the compared algorithms on WFG2"
Problem | Number of objectives | ε-Two_Arch2 | Two_Arch2 | NSGA-III | PICEA-g | GrEA | SPEA2+SDE |
WFG2 | 4 | 0.6035(4) | 0.7598(6) | 0.3542(1) | 0.6799(5) | 0.4649(3) | 0.4325(2) |
5 | 0.6718(3) | 1.0610(6) | 0.6269(2) | 0.8379(5) | 0.6003(1) | 0.6908(4) | |
6 | 0.8332(1) | 1.0692(4) | 0.9738(3) | 1.1085(6) | 0.8967(2) | 1.0851(5) | |
7 | 1.0245(1) | 1.1016(2) | 1.1326(3) | 1.6732(5) | 1.3346(4) | 1.6784(6) | |
8 | 1.1918(2) | 1.0861(1) | 1.3148(3) | 2.1291(6) | 1.4504(4) | 1.8792(5) | |
9 | 1.4244(2) | 1.3746(1) | 1.4245(3) | 2.6895(6) | 1.6641(4) | 2.3498(5) | |
10 | 1.5496(1) | 1.5913(3) | 1.5758(2) | 2.8271(6) | 1.8796(4) | 2.4723(5) |
Table 8
Average values of IGD results of the compared algorithms on WFG3"
Problem | Number of objectives | ε-Two_Arch2 | Two_Arch2 | NSGA-III | PICEA-g | GrEA | SPEA2+SDE |
WFG3 | 4 | 0.4015(6) | 0.2302(3) | 0.2595(4) | 0.1051(1) | 0.1886(2) | 0.3917(5) |
5 | 0.4641(4) | 0.4368(3) | 0.4826(5) | 0.1619(1) | 0.1750(2) | 0.7476(6) | |
6 | 0.6939(5) | 0.6680(4) | 0.4316(3) | 0.1367(1) | 0.1576(2) | 0.9573(6) | |
7 | 0.7021(2) | 0.8558(4) | 0.8874(5) | 0.8301(3) | 0.2385(1) | 1.4632(6) | |
8 | 1.0605(3) | 1.1274(4) | 0.9637(2) | 1.3544(5) | 0.2802(1) | 1.7383(6) | |
9 | 1.1837(3) | 1.3415(4) | 0.9674(2) | 1.4762(5) | 0.3067(1) | 1.9325(6) | |
10 | 1.2162(3) | 1.4811(4) | 0.9933(2) | 1.9196(5) | 0.4649(1) | 1.9692(6) |
Table 9
Average values of IGD results of the compared algorithms on WFG4"
Problem | Number of objectives | ε-Two_Arch2 | Two_Arch2 | NSGA-III | PICEA-g | GrEA | SPEA2+SDE |
WFG4 | 4 | 0.5396(1) | 0.6539(4) | 0.6047(3) | 0.7776(6) | 0.5904(2) | 0.7050(5) |
5 | 1.0659(1) | 1.2381(4) | 1.1243(3) | 1.3414(6) | 1.0675(2) | 1.2414(5) | |
6 | 1.4878(1) | 1.9047(5) | 1.7626(3) | 3.4694(6) | 1.6227(2) | 1.8411(4) | |
7 | 2.1132(1) | 2.6881(5) | 2.4735(2) | 3.9842(6) | 2.5321(3) | 2.6742(4) | |
8 | 2.0494(1) | 3.4703(5) | 2.9879(3) | 4.3705(6) | 2.8534(5) | 2.9891(4) | |
9 | 2.5717(1) | 4.3499(5) | 2.8734(2) | 5.0312(6) | 3.1595(3) | 3.6849(4) | |
10 | 3.0694(2) | 5.1960(5) | 2.7989(1) | 5.2501(6) | 3.8251(3) | 3.8387(4) |
Table 10
Average values of IGD results of the compared algorithms on WFG5"
Problem | Number of objectives | ε-Two_Arch2 | Two_Arch2 | NSGA-III | PICEA-g | GrEA | SPEA2+SDE |
WFG5 | 4 | 0.2172(1) | 0.6619(4) | 0.5955(3) | 0.8014(6) | 0.5940(2) | 0.7157(5) |
5 | 0.7704(1) | 1.2246(4) | 1.1179(3) | 1.3701(6) | 1.0834(2) | 1.2542(5) | |
6 | 0.8705(1) | 1.8981(5) | 1.7167(3) | 2.0773(6) | 1.6535(2) | 1.8369(4) | |
7 | 1.3184(1) | 2.6287(5) | 2.1356(2) | 2.8904(6) | 2.4573(3) | 2.4874(4) | |
8 | 1.3281(1) | 3.4438(6) | 2.9538(4) | 3.3167(5) | 2.8551(2) | 2.9097(3) | |
9 | 1.6306(1) | 4.2972(6) | 2.8381(2) | 3.5982(5) | 3.3904(3) | 3.4928(4) | |
10 | 2.1201(1) | 5.0838(6) | 2.7024(2) | 3.8423(4) | 3.8612(5) | 3.7335(3) |
Table 11
Average values of IGD results of the compared algorithms on WFG6"
Problem | Number of objectives | ε-Two_Arch2 | Two_Arch2 | NSGA-III | PICEA-g | GrEA | SPEA2+SDE |
WFG6 | 4 | 0.3768(1) | 0.6751(4) | 0.6175(3) | 0.8370(6) | 0.6159(2) | 0.7534(5) |
5 | 0.7905(1) | 1.2527(4) | 1.1377(3) | 1.4275(6) | 1.1080(2) | 1.3163(5) | |
6 | 0.8715(1) | 1.9374(4) | 1.7318(3) | 2.1173(6) | 1.6431(2) | 1.9203(5) | |
7 | 1.3695(1) | 2.6722(4) | 2.6723(5) | 2.8952(6) | 2.3649(2) | 2.4875(3) | |
8 | 1.5943(1) | 3.4910(5) | 3.0176(4) | 3.5134(6) | 2.8809(2) | 2.9825(3) | |
9 | 2.0326(1) | 4.3084(6) | 2.8931(2) | 3.7686(5) | 3.4784(4) | 3.2718(3) | |
10 | 2.6002(1) | 5.0426(6) | 2.7913(2) | 3.9433(5) | 3.8699(4) | 3.6443(3) |
Table 12
Average values of IGD results of the compared algorithms on WFG7"
Problem | Number of objectives | ε-Two_Arch2 | Two_Arch2 | NSGA-III | PICEA-g | GrEA | SPEA2+SDE |
WFG7 | 4 | 1.2137(6) | 0.9708(5) | 0.5841(1) | 0.8554(4) | 0.6048(2) | 0.7127(3) |
5 | 2.0960(6) | 1.6853(5) | 1.1099(2) | 1.4142(4) | 1.0844(1) | 1.2511(3) | |
6 | 2.4758(6) | 2.0541(4) | 1.6978(2) | 2.2881(5) | 1.6093(1) | 1.8145(3) | |
7 | 3.4406(5) | 3.6137(6) | 2.4391(3) | 2.3874(1) | 2.4639(4) | 2.3982(2) | |
8 | 3.0700(4) | 4.3854(6) | 2.9771(3) | 3.3989(5) | 2.8392(1) | 2.8838(2) | |
9 | 3.8203(5) | 4.6156(6) | 2.9010(1) | 3.4756(3) | 3.5735(4) | 3.3873(2) | |
10 | 4.6485(5) | 5.6048(6) | 2.8390(1) | 3.7319(3) | 3.7766(4) | 3.6307(2) |
Table 13
Average values of IGD results of the compared algorithms on WFG8"
Problem | Number of objectives | ε-Two_Arch2 | Two_Arch2 | NSGA-III | PICEA-g | GrEA | SPEA2+SDE |
WFG8 | 4 | 1.4787(6) | 1.2511(4) | 1.3877(5) | 0.8899(3) | 0.7625(1) | 0.8166(2) |
5 | 2.2789(6) | 1.9072(5) | 1.8720(4) | 1.6071(3) | 1.2792(1) | 1.4065(2) | |
6 | 2.5443(4) | 2.6925(5) | 2.3222(3) | 2.8368(6) | 1.7923(1) | 2.0318(2) | |
7 | 3.3274(4) | 3.5075(6) | 2.8319(3) | 3.4892(5) | 2.5871(1) | 2.6772(2) | |
8 | 3.0142(1) | 4.1873(5) | 3.1872(3) | 4.2223(6) | 3.2510(4) | 3.0696(2) | |
9 | 3.5511(2) | 5.1911(6) | 3.3918(1) | 5.1901(5) | 3.7893(4) | 3.6758(3) | |
10 | 4.0284(3) | 6.1230(6) | 3.7084(1) | 5.5757(5) | 4.1682(4) | 3.9159(2) |
Table 14
Average values of IGD results of the compared algorithms on WFG9"
Problem | Number of objectives | ε-Two_Arch2 | Two_Arch2 | NSGA-III | PICEA-g | GrEA | SPEA2+SDE |
WFG9 | 4 | 0.5724(1) | 0.7801(5) | 0.6156(3) | 0.7805(6) | 0.5945(2) | 0.6912(4) |
5 | 1.1662(2) | 1.3915(6) | 1.1589(1) | 1.2883(5) | 1.1222(3) | 1.2323(4) | |
6 | 1.3845(1) | 2.0930(6) | 1.8257(3) | 1.8978(5) | 1.7244(2) | 1.8513(4) | |
7 | 2.1517(1) | 2.9322(6) | 2.4563(3) | 2.7739(4) | 2.3448(2) | 2.6832(5) | |
8 | 3.4532(5) | 3.6348(6) | 3.0258(3) | 3.2877(4) | 2.9998(1) | 3.0192(2) | |
9 | 4.4318(5) | 4.5440(6) | 3.0321(1) | 3.9763(4) | 3.4644(2) | 3.6470(3) | |
10 | 5.2806(5) | 5.5981(6) | 3.0399(1) | 4.1914(4) | 3.9301(3) | 3.7831(2) |
12 |
LIU Y, ZHU N B, LI K L, et al An angle dominance criterion for evolutionary many-objective optimization. Information Sciences, 2020, 509, 376- 399.
doi: 10.1016/j.ins.2018.12.078 |
13 |
DEB K, JAIN H An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Trans. on Evolutionary Computation, 2014, 18 (4): 577- 601.
doi: 10.1109/TEVC.2013.2281535 |
14 |
YANG S X, LI M Q, LIU X H, et al A grid-based evolutionary algorithm for many-objective optimization. IEEE Trans. on Evolutionary Computation, 2013, 17 (5): 721- 736.
doi: 10.1109/TEVC.2012.2227145 |
15 |
ASAFUDDOULA M, RAY T, SARKER R A decomposition-based evolutionary algorithm for many objective optimization. IEEE Trans. on Evolutionary Computation, 2015, 19 (3): 445- 460.
doi: 10.1109/TEVC.2014.2339823 |
16 |
YUAN Y, XU H, WANG B, et al Balancing convergence and diversity in decomposition-based many-objective optimizers. IEEE Trans. on Evolutionary Computation, 2016, 20 (2): 180- 198.
doi: 10.1109/TEVC.2015.2443001 |
17 |
LYU C Z, LI W M Evolutionary many objective optimization based on bidirectional decomposition. Journal of Systems Engineering and Electronics, 2019, 30 (2): 319- 326.
doi: 10.21629/JSEE.2019.02.11 |
18 |
BADER J, ZITZLER E HypE: an algorithm for fast hypervolume-based many-objective optimization. Evolutionary Computation, 2011, 19 (1): 45- 76.
doi: 10.1162/EVCO_a_00009 |
19 | BADER J, ZITZLER E. A hypervolume-based optimizer for high-dimensional objective spaces. JONES D, TAMIZ M, RIES J. ed. New developments in multiple objective and goal programming. Berlin: Springer, 2010. |
20 | BROCKHOFF D, WAGNER T, TRAUTMANN H On the properties of the R2 indicator. Proc. of the 14th Annual Conference on Genetic and Evolutionary Computation, 2012, 465- 472. |
21 | GOMEZ R H, COELLO COELLO C A Improved metaheuristic based on the R2 indicator for many-objective optimization. Proc. of the Annual Conference on Genetic and Evolutionary Computation, 2015, 679- 686. |
22 |
SUN Y N, YEN G G, YI Z IGD indicator-based evolutionary algorithm for many-objective optimization problems. IEEE Trans. on Evolutionary Computation, 2019, 23 (2): 173- 187.
doi: 10.1109/TEVC.2018.2791283 |
23 | SAXENA D K, DEB K Non-linear dimensionality reduction procedures for certain large-dimensional multi-objective optimization problems: employing correntropy and a novel maximum variance unfolding. Proc. of the 4th International Conference on Evolutionary Multi-criterion Optimization, 2007, 772- 787. |
24 | FREITAS A R R, FLEMING P J, GUIMARAES F G A non-parametric harmony-based objective reduction method for many-objective optimization. Proc. of the IEEE International Conference on Systems, 2013, 651- 656. |
25 |
YUAN Y, ONG Y, GUPTA A, et al Objective reduction in many-objective optimization: evolutionary multiobjective approaches and comprehensive analysis. IEEE Trans. on Evolutionary Computation, 2018, 22 (2): 189- 210.
doi: 10.1109/TEVC.2017.2672668 |
26 |
LI M H, WEI J X, SONG A, et al Objective reduction using objective sampling and affinity propagation for many-objective optimization problems. IEEE Access, 2019, 7, 68392- 68403.
doi: 10.1109/ACCESS.2019.2914069 |
27 | PRADITWONG K, YAO X A new multi-objective evolutionary optimisation algorithm: the two-archive algorithm. Proc. of the International Conference on Computational Intelligence and Security, 2006, 286- 291. |
28 | LI B D, LI J L, TANG K, et al An improved two archive algorithm for many-objective optimization. Proc. of the IEEE Congress on Evolutionary Computation, 2014, 2869- 2876. |
29 |
DAI C Two-archive evolutionary algorithm based on multi-search strategy for many-objective optimization. IEEE Access, 2019, 7, 79277- 79286.
doi: 10.1109/ACCESS.2019.2917899 |
30 |
WANG H D, JIAO L C, YAO X Two_Arch2: an improved two-archive algorithm for many-objective optimization. IEEE Trans. on Evolutionary Computation, 2015, 19 (4): 524- 541.
doi: 10.1109/TEVC.2014.2350987 |
31 |
LIANG Z P, LUO T T, HU K F, et al An indicator-based many-objective evolutionary algorithm with boundary protection. IEEE Trans. on Cybernetics, 2021, 51 (9): 4553- 4566.
doi: 10.1109/TCYB.2019.2960302 |
32 |
ZHANG X Y, TIAN Y, JIN Y C A knee point-driven evolutionary algorithm for many-objective optimization. IEEE Trans. on Evolutionary Computation, 2015, 19 (6): 761- 776.
doi: 10.1109/TEVC.2014.2378512 |
33 | WANG R, ZHANG Q F, ZHANG T Pareto adaptive scalarising functions for decomposition based algorithms. Proc. of the International Conference on Evolutionary Multi-Criterion Optimization, 2015, 248- 262. |
34 | DEB K, THIELE L, LAUMANNS M, et al Scalable multi- objective optimization test problems. Proc. of the Congress on Evolutionary Computation, 2002, 825- 830. |
35 |
HUBAND S, HINGSTON P, BARONE L, et al A review of multiobjective test problems and a scalable test problem toolkit. IEEE Trans. on Evolutionary Computation, 2006, 10 (5): 477- 506.
doi: 10.1109/TEVC.2005.861417 |
36 | ZHANG Q F, ZHOU A, ZHAO S Z, et al. Multiobjective optimization test instances for the CEC 2009 special session and competition. http://www.al-roomi.org/multimedia/CEC_Database/CEC2009/MultiObjectiveEA/CEC2009_MultiObjectiveEA_TechnicalReport.pdf. |
37 |
ZITZLER E, THIELE L Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans. on Evolutionary Computation, 1999, 3 (4): 257- 271.
doi: 10.1109/4235.797969 |
38 | DEB K, AGRAWAL R B Simulated binary crossover for continuous search space. Complex Systems, 1994, 9 (3): 115- 148. |
1 | DEB K. Multi-objective optimization using evolutionary algorithms. New York: John Wiley & Sons, 2001. |
2 | MIETTINEN K. Nonlinear multiobjective optimization. Berlin: Springer, 1999. |
3 | DEB K, AGARWAL S, PRATAP A, et al A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. Proc. of the 6th International Conference on Parallel Problem Solving from Nature, 2000, 849- 858. |
4 | ZITZLER E, LAUMANNS M, THIELE L. SPEA2: improving the strength pareto evolutionary algorithm. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.112.5073&rep=rep1&type=pdf. DOI: 10.3929/ethz-a-004284029. |
5 | PRADITWONG K, YAO X How well do multi-objective evolutionary algorithms scale to large problems. Proc. of the IEEE Congress on Evolutionary Computation, 2007, 3959- 3966. |
6 | ISHIBUCHI H, TSUKAMOTO N, NOJIMA Y Evolutionary many-objective optimization: a short review. Proc. of the IEEE Congress on Evolutionary Computation, 2008, 2419- 2426. |
7 |
HERNANDEZ-DIAZ A G, SANTANA-QUINTERO L V, COELLO COELLO C A, et al Pareto-adaptive ε-dominance. Evolutionary Computation, 2007, 15 (4): 493- 517.
doi: 10.1162/evco.2007.15.4.493 |
8 |
DEB K, MOHAN M, MISHRA S Evaluating the ε-domination based multi-objective evolutionary algorithm for a quick computation of Pareto-optimal solutions. Evolutionary Computation, 2005, 13 (4): 501- 525.
doi: 10.1162/106365605774666895 |
9 |
WANG R, PURSHOUSE R C, FLEMING P J Preference-inspired coevolutionary algorithms for many-objective optimization. IEEE Trans. on Evolutionary Computation, 2013, 17 (4): 474- 494.
doi: 10.1109/TEVC.2012.2204264 |
10 |
LI M, YANG S X, LIU X H Shift-based density estimation for pareto-based algorithms in many-objective optimization. IEEE Trans. on Evolutionary Computation, 2014, 18 (3): 348- 365.
doi: 10.1109/TEVC.2013.2262178 |
11 |
DAI C, WANG Y P, HU L J An improved α-dominance strategy for many-objective optimization problems. Soft Computing, 2016, 20 (3): 1105- 1111.
doi: 10.1007/s00500-014-1570-8 |
[1] | Na WANG, Yuchao SU, Xiaohong CHEN, Xia LI, Dui LIU. A $\boldsymbol{\varepsilon}$-indicator-based shuffled frog leaping algorithm for many-objective optimization problems [J]. Journal of Systems Engineering and Electronics, 2020, 31(1): 142-155. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||