Journal of Systems Engineering and Electronics ›› 2022, Vol. 33 ›› Issue (6): 1088-1095.doi: 10.23919/JSEE.2022.000126
• ELECTRONICS TECHNOLOGY • Previous Articles
Siting LYU1,2(), Xiaohui LI1,2,*(
), Tao FAN1,2(
), Jiawen LIU1,2(
), Mingli SHI1,2(
)
Received:
2021-10-15
Accepted:
2022-06-07
Online:
2022-12-18
Published:
2022-12-24
Contact:
Xiaohui LI
E-mail:stlv_0202@stu.xidian.edu.cn;xhli@mail.xidian.edu.cn;601391627@qq.com;316631694@qq.com;1392571846@qq.com
About author:
Supported by:
Siting LYU, Xiaohui LI, Tao FAN, Jiawen LIU, Mingli SHI. Deep learning for fast channel estimation in millimeter-wave MIMO systems[J]. Journal of Systems Engineering and Electronics, 2022, 33(6): 1088-1095.
Table 1
Parameters for HNN complexity ( ${{\boldsymbol{N_t}}} {\boldsymbol{=}} {\boldsymbol{64}}$ ) "
| Conv1 | Conv2 | Conv3 | DeConv1 | DeConv2 | DeConv3 | FC1 | FC2 |
| 3, 3 | 3, 3 | 3, 3 | 1, 1 | 1, 1 | 1, 1 | − | − |
| 64, 4 | 64, 4 | 64, 4 | 64, 4 | 64, 4 | 64, 4 | − | − |
| 1, 8 | 8, 32 | 32, 64 | 64, 64 | 64, 32 | 32, 8 | − | − |
| − | − | − | − | − | − | 2048, 4096 | 4096, 8192 |
1 | BUSARI S A, HUQ K M S, MUMTAZ S, et al Millimeter-wave massive MIMO communication for future wireless systems: a survey. IEEE Communications Surveys & Tutorials, 2018, 20 (2): 836- 869. |
2 |
ZHAI X F, CAI Y L, SHI Q J, et al Joint transceiver design with antenna selection for large-scale MU-MIMO mmWave systems. IEEE Journal on Selected Areas in Communications, 2017, 35 (9): 2085- 2096.
doi: 10.1109/JSAC.2017.2720197 |
3 |
WEI X X, JIANG Y, LIU Q, et al Calibration of phase shifter network for hybrid beamforming in mmWave massive MIMO systems. IEEE Trans. on Signal Processing, 2020, 68, 2302- 2315.
doi: 10.1109/TSP.2020.2984884 |
4 |
WANG Y, ZOU W X Low complexity hybrid precoder design for millimeter wave MIMO systems. IEEE Communications Letters, 2019, 23 (7): 1259- 1262.
doi: 10.1109/LCOMM.2019.2917090 |
5 |
QIAO Y, YU S Y, SU P C, et al Research on an iterative algorithm of LS channel estimation in MIMO OFDM systems. IEEE Trans. on Broadcasting, 2005, 51 (1): 149- 153.
doi: 10.1109/TBC.2004.842524 |
6 | MA J, YU H, LIU S Y. The MMSE channel estimation based on DFT for OFDM system. Proc. of the 5th International Conference on Wireless Communications, Networking and Mobile Computing, 2009. DOI: 10.1109/WICOM.2009.5305570. |
7 | ANSARI N, GUPTA A S, GUPTA A. Underwater acoustic channel estimation via CS with prior information. Proc. of OCEANS, 2017. DOI: 10.1109/OCEANSE.2017.8084965. |
8 |
WAN L, QIANG X Z, MA L, et al Accurate and efficient path delay estimation in OMP based sparse channel estimation for OFDM with equispaced pilots. IEEE Wireless Communications Letters, 2019, 8 (1): 117- 120.
doi: 10.1109/LWC.2018.2860996 |
9 |
FAN D, GAO F F, LIU Y F, et al Angle domain channel estimation in hybrid millimeter wave massive MIMO systems. IEEE Trans. on Wireless Communications, 2018, 17 (12): 8165- 8179.
doi: 10.1109/TWC.2018.2874640 |
10 |
CHU H Y, ZHENG L, WANG X D Super-resolution mmWave channel estimation for generalized spatial modulation systems. IEEE Journal of Selected Topics in Signal Processing, 2019, 13 (6): 1336- 1347.
doi: 10.1109/JSTSP.2019.2918481 |
11 | LIU J W, LI X H, FANG K, et al. Millimeter wave channel estimation based on clustering block sparse Bayesian learning. Proc. of the 11th International Conference on Wireless Communications and Signal Processing, 2019. DOI: 10.1109/WCSP.2019.8928086. |
12 |
MEI K W, LIU J H, ZHANG X C, et al Performance analysis on machine learning-based channel estimation. IEEE Trans. on Communications, 2021, 69 (8): 5183- 5193.
doi: 10.1109/TCOMM.2021.3083597 |
13 |
CHUN C J, KANG J M, KIM I M Deep learning-based channel estimation for massive MIMO systems. IEEE Wireless Communications Letters, 2019, 8 (4): 1228- 1231.
doi: 10.1109/LWC.2019.2912378 |
14 |
SOLTANI M, POURAHMADI V, MIRZAEI A, et al Deep learning-based channel estimation. IEEE Communications Letters, 2019, 23 (4): 652- 655.
doi: 10.1109/LCOMM.2019.2898944 |
15 | BALEVI E, DOSHI A, ANDREWS J G Massive MIMO channel estimation with an untrained deep neural network. IEEE Trans. on Wireless Communications, 2020, 20 (3): 2079- 2090. |
16 |
HIROSE H, OHTSUKI T, GUI G Deep learning-based channel estimation for massive MIMO systems with pilot contamination. IEEE Open Journal of Vehicular Technology, 2021, 2, 67- 77.
doi: 10.1109/OJVT.2020.3045470 |
17 |
QIANG H, GAO F F, HAO Z, et al Deep learning for MIMO channel estimation: interpretation, performance, and comparison. IEEE Trans. on Wireless Communications, 2021, 20 (4): 2398- 2412.
doi: 10.1109/TWC.2020.3042074 |
18 | LI X F, ALKHATEEB A, TEPEDELENLIOGLU C. Generative adversarial estimation of channel covariance in vehicular millimeter wave systems. Proc. of the 52nd Asilomar Conference on Signals, Systems, and Computers, 2018: 1572–1576. |
19 | AYACH O E, RAJAGOPAL S, ABU-SURRA S, et al Spatially sparse precoding in millimeter wave MIMO systems. IEEE Trans. on Wireless Communications, 2014, 14 (3): 1499- 1513. |
20 |
ALI A, GONZALEZ-PRELCIC N, HEATH R W Spatial covariance estimation for millimeter wave hybrid systems using out-of-band information. IEEE Trans. on Wireless Communications, 2019, 18 (12): 5471- 5485.
doi: 10.1109/TWC.2019.2932404 |
21 |
DONG P, ZHANG H, LI G Y, et al Deep CNN-based channel estimation for mmWave massive MIMO systems. IEEE Journal of Selected Topics in Signal Processing, 2019, 13 (5): 989- 1000.
doi: 10.1109/JSTSP.2019.2925975 |
22 | GLOROT X, BENGIO Y. Understanding the difficulty of training deep feedforward neural networks. Proc. of the 13th International Conference on Artificial Intelligence and Statistics, 2010: 249–256. |
23 | HE K M, ZHANG X Y, REN S Q, et al. Delving deep into rectifiers: surpassing human-level performance on imagenet classification. Proc. of the IEEE International Conference on Computer Vision, 2015: 1026–1034. |
24 | ALKHATEEB A, AYACH O E, LEUS G, et al. Hybrid precoding for millimeter wave cellular systems with partial channel knowledge. Proc. of the Information Theory and Applications Workshop, 2013. DOI: 10.1109/ITA.2013.6522603. |
25 | KINGMA D P, BA J. Adam: a method for stochastic optimization. https://arxiv.org/abs/1412.6980. |
26 |
XU H, KUKSHYA V, RAPPAPORT T S Spatial and temporal characteristics of 60-GHz indoor channels. IEEE Journal on Selected Areas in Communications, 2002, 20 (3): 620- 630.
doi: 10.1109/49.995521 |
27 | SAYEED A M. Deconstructing multiantenna fading channels. IEEE Trans. on Signal Processing, 2002, 50(10): 2563–2579. |
28 | MOLCHANOV P, TYREE S, KARRAS T, et al. Pruning convolutional neural networks for resource efficient inference. https://arxiv.org/abs/1611.06440. |
29 | LDPE2G. Calculate FLOPs for CNN. https://my.oschina.net/Ldpe2G/blog/2208123. |
30 |
YANG Y W, GAO F F, ZHONG Z M, et al Deep transfer learning-based downlink channel prediction for FDD massive MIMO systems. IEEE Trans. on Communications, 2020, 68 (12): 7485- 7497.
doi: 10.1109/TCOMM.2020.3019077 |
31 | MAO H X, LU H C, LU Y J, et al. RoemNet: robust meta learning based channel estimation in OFDM systems. Proc. of the IEEE International Conference on Communications, 2019. DOI: 10.1109/ICC.2019.8761319. |
[1] | Chuan LIN, Qing CHANG, Xianxu LI. Uplink NOMA signal transmission with convolutional neural networks approach [J]. Journal of Systems Engineering and Electronics, 2020, 31(5): 890-898. |
[2] | Yasong LUO, Shengliang HU, Chengxu FENG, Jijin TONG. Power optimization algorithm for OFDM underwater acoustic communication using adaptive channel estimation [J]. Journal of Systems Engineering and Electronics, 2019, 30(4): 662-671. |
[3] | Jiansheng HU, Zuxun SONG, Shuxia GUO, Qian ZHANG, Dongdong SHUI. Sparse channel recovery with inter-carrier interference self-cancellation in OFDM [J]. Journal of Systems Engineering and Electronics, 2018, 29(4): 676-683. |
[4] | Xu Wang, Tao Yang, and Bo Hu. Low-complexity fractional phase estimation for totally blind channel estimation [J]. Journal of Systems Engineering and Electronics, 2015, 26(2): 232-240. |
[5] | Xiaofei Zhang and Dazhuan Xu. Blind channel estimation for multiple antenna OFDM system subject to unknown carrier frequency offset [J]. Journal of Systems Engineering and Electronics, 2014, 25(5): 721-727. |
[6] | Donghua Chen and Hongbing Qiu. Mobile channel estimation for MU-MIMO systems using KL expansion based extrapolation [J]. Journal of Systems Engineering and Electronics, 2012, 23(3): 349-354. |
[7] | Xiangbin Yu and Guangguo Bi. Power control scheme for multiple antenna systems with space-time coding in Rayleigh fading channels [J]. Journal of Systems Engineering and Electronics, 2011, 22(5): 730-738. |
[8] | Peng Xu, Jinkuan Wang, and Feng Qi. Improved H-infinity channel estimator based on EM for MIMO-OFDM systems [J]. Journal of Systems Engineering and Electronics, 2011, 22(4): 572-578. |
[9] | Yang Zhang, Jiandong Li, and Lihua Pang. Hybrid pilots assisted channel estimation algorithm for MIMO-OFDM systems [J]. Journal of Systems Engineering and Electronics, 2010, 21(5): 721-728. |
[10] | Xiaoping Zhou, Yong Fang, and Min Wang. Compressed sensing based channel estimation for fast fading OFDM systems [J]. Journal of Systems Engineering and Electronics, 2010, 21(4): 550-556. |
[11] | Maoge Xu and Yaoliang Song. Bayesian sequential state estimation for MIMO-OFDM systems [J]. Journal of Systems Engineering and Electronics, 2010, 21(1): 148-153. |
[12] | Pang Jiyong, Li Jiandong, Lu Zhuo, Zhao Linjing & Chen Liang. Optimal training sequences for MIMO systems under correlated fading [J]. Journal of Systems Engineering and Electronics, 2008, 19(1): 33-38. |
[13] | Liang Yongming, Luo Hanwen, Wu Yadong & Huang Jianguo. Blind channel estimation for redundant precoded OFDM systems [J]. Journal of Systems Engineering and Electronics, 2007, 18(4): 692-697. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||