Journal of Systems Engineering and Electronics ›› 2022, Vol. 33 ›› Issue (6): 1081-1087.doi: 10.23919/JSEE.2022.000135
• ELECTRONICS TECHNOLOGY •
Peiyu WU1(), Han YU2(), Yenan HU2,*(), Yongjun XIE1(), Haolin JIANG3()
Received:
2021-04-07
Online:
2022-12-18
Published:
2022-12-24
Contact:
Yenan HU
E-mail:wupuuu@yahoo.com;yuhanihit@163.com;huyenan163@163.com;yjxie@buaa.edu.cn;haolinjiang.cem@gmail.com
About author:
Supported by:
Peiyu WU, Han YU, Yenan HU, Yongjun XIE, Haolin JIANG. Approximate CN scheme and its open region problems for metamaterial rotational symmetric simulation[J]. Journal of Systems Engineering and Electronics, 2022, 33(6): 1081-1087.
Table 1
Comparison of CPU time, iteration steps, memory, reduction, and MRRE of different PML algorithms"
PML algorithm | CFLN | Step | Time/s | Memory/MB | Reduction/% | MRRE /dB |
FDTD-PML | 1 | 65536 | 22.6 | 2.7 | − | −86.5 |
HFSS-UPML | 1 | 65536 | 39.5 | 49.5 | −74.8 | −60.8 |
CST-CPML | 1 | 65536 | 32.9 | 29.4 | −45.8 | −63.7 |
ADI-PML | 1 | 65536 | 91.7 | 3.2 | −305.8 | −69.8 |
ADI-PML | 16 | 4096 | 5.3 | 3.2 | 76.5 | −46.2 |
CNDG-PML | 1 | 65536 | 83.8 | 3.3 | −270.8 | −73.9 |
CNDG-PML | 16 | 4096 | 4.9 | 3.3 | 78.3 | −56.5 |
1 |
TEIXEIRA F L, WANG S M Grid-dispersion error reduction for broadband FDTD electromagnetic simulations. IEEE Trans. on Magnetics, 2004, 40 (2): 1440- 1443.
doi: 10.1109/TMAG.2004.824904 |
2 |
YEE K S Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. on Antennas and Propagation, 1966, 14 (3): 302- 307.
doi: 10.1109/TAP.1966.1138693 |
3 |
CHEN Y H, COATES R T, CHEW W C FDTD modeling and analysis of a broadband antenna suitable for oil-field imaging while drilling. IEEE Trans. on Geoscience and Remote Sensing, 2002, 40 (2): 434- 442.
doi: 10.1109/36.992807 |
4 |
SHIBAYAMA J, OIKAWA T, YAMAUCHI J, et al Efficient LOD-BOR-FDTD implementation based on a fundamental scheme. IEEE Photonics Technology Letter, 2012, 24 (11): 957- 959.
doi: 10.1109/LPT.2012.2190502 |
5 |
CHEN Y, MITTRA R, HARMS P Finite-difference time-domain algorithm for solving Maxwell’s equations in rotationally symmetric geometries. IEEE Trans. on Microwave Theory and Techniques, 1996, 44 (6): 832- 839.
doi: 10.1109/22.506441 |
6 | TAFLOVE A, HAGNESS S C. Computational electrodynamics: the finite-difference time domain method. 3rd ed. Norwood, MA: Artech House, 2005. |
7 |
SUN G, TRUEMAN C W Unconditionally stable Crank-Nicolson scheme for solving two-dimensional Maxwell’s equations. Electronics Letters, 2003, 39 (7): 595- 597.
doi: 10.1049/el:20030416 |
8 |
SUN G, TRUEMAN C W Approximate Crank-Nicolson schemes for the 2-D finite-difference time-domain method for TEz waves. IEEE Trans. on Antennas and Propagation, 2004, 52 (11): 2963- 2972.
doi: 10.1109/TAP.2004.835142 |
9 |
LI J X, JIAO W, ZHAO X Unconditionally stable CFS-PML based on CNAD-BOR-FDTD for truncating unmagnetized plasma. IEEE Trans. on Electromagnetic Compatibility, 2018, 60 (6): 2069- 2072.
doi: 10.1109/TEMC.2017.2788421 |
10 | WU P Y, XIE Y J, JIANG H L, et al Higher-order approximate CN-PML theory for magnetized ferrite simulations. Advanced Theory and Simulations, 2020, 3 (4): 190021. |
11 |
BERENGER J P A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics, 1994, 114 (2): 185- 200.
doi: 10.1006/jcph.1994.1159 |
12 |
BERENGER J P Perfectly matched layer for the FDTD solution of wave-structure interaction problems. IEEE Trans. on Antennas and Propagation, 1996, 44 (1): 110- 117.
doi: 10.1109/8.477535 |
13 |
TEIXEIRA F L, CHEW W C, STRAKA M, et al Finite-difference time-domain simulation of ground penetrating radar on dispersive, inhomogeneous, and conductive soils. IEEE Trans. on Geoscience and Remote Sensing, 1998, 36 (6): 1928- 1937.
doi: 10.1109/36.729364 |
14 |
CHEW W C, WEEDON W H A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates. Microwave Optical Technology Letter, 1994, 7 (13): 599- 604.
doi: 10.1002/mop.4650071304 |
15 |
KUZUOGLU J M, MITTRA R Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers. IEEE Microwave Guided Wave Letter, 1996, 6 (12): 447- 449.
doi: 10.1109/75.544545 |
16 |
JIANG H L, ZHANG J F, JIANG W X, et al Unconditionally stable CN-PML algorithm for frequency-dispersive left-handed materials. IEEE Antennas Wireless Propagation Letters, 2017, 16, 2006- 2009.
doi: 10.1109/LAWP.2017.2692883 |
17 |
LI J, WU P Y Unconditionally stable higher order CNAD-PML for left-handed materials. IEEE Trans. on Antennas and Propagation, 2019, 67 (11): 7156- 7161.
doi: 10.1109/TAP.2019.2927761 |
18 | ARIMA T, UNO T Undesired reflection from matched DNG Slab in RC-FDTD analysis and its improving method. Proc. of the International Workshop on Antenna Technology: Small and Smart Antennas Metamaterials and Applications, 2007, 404- 407. |
19 |
WU P Y, XIE Y J, JIANG H L, et al Performance enhanced Crank-Nicolson boundary conditions for EM problems. IEEE Trans. on Antennas and Propagation, 2021, 69 (3): 1513- 1527.
doi: 10.1109/TAP.2020.3016403 |
20 |
CHEN Z H, CHU Q X A novel FDTD matched load model of microstrip line. Asia-Pacific Microwave Conference Proceedings, 2005, 3, 8846156.
doi: 10.1109/APMC.2005.1606670 |
21 |
ZHENG K S, TAM W Y, GE D B, et al Uniaxial PML absorbing boundary condition for truncating the boundary of DNG metamaterials. Progress in Electromagnetic. Research Letter, 2009, 8, 125- 134.
doi: 10.2528/PIERL09030901 |
22 |
KELLEY D F, LUEBBERS R J Piecewise linear recursive convolution for dispersive media using FDTD. IEEE Trans. on Antennas and Propagation, 1996, 44 (6): 792- 797.
doi: 10.1109/8.509882 |
23 |
CUMMER S A An analysis of new and existing FDTD methods for isotropic cold plasma and a method for improving their accuracy. IEEE Trans. on Antennas and Propagation, 1997, 45 (3): 392- 400.
doi: 10.1109/8.558654 |
24 | HA M, SWAMINATHAN M A Laguerre-FDTD formulation for frequency-dependent dispersive materials. IEEE Microwave and Wireless Components Letters, 2011, 21 (5): 225- 227. |
25 |
SHI Y, LI Y, LIANG C H Perfectly matched layer absorbing boundary condition for truncating the boundary of the left-handed medium. Microwave Optical Technology Letter, 2006, 48 (1): 57- 63.
doi: 10.1002/mop.21260 |
26 |
TEIXEIRA F L, CHEW W C PML-FDTD in cylindrical and spherical grids. IEEE Microwave and Guided Wave Letters, 1997, 7 (9): 285- 287.
doi: 10.1109/75.622542 |
27 | RAMADAN O. An efficient state-space ADI-PML algorithm for truncating DNG metamaterial FDTD domains. Microwave Optical Technology Letter, 2007, 49(2): 494−498. |
28 |
CHEN H L, CHEN B Anisotropic-medium PML for ADI-BOR-FDTD method. IEEE Microwave and Wireless Components Letters, 2008, 18 (4): 221- 223.
doi: 10.1109/LMWC.2008.918842 |
29 | CHEN H L, CHEN B, SHI L, et al Stability analysis of ADI-BOR-FDTD method. Proc. of the 5th Asia-Pacific Conference on Environmental Electromagnetics, 2009, 313- 316. |
30 |
GEDNEY S D An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices. IEEE Trans. on Antennas and Propagation, 1996, 44 (12): 1630- 1639.
doi: 10.1109/8.546249 |
31 | VEERLAVENKAIAH D, RAGHAVAN S Determination of propagation constant using 1D-FDTD with MATLAB. Proc. of the International Conference on Communication Systems and Networks, 2016, 61- 64. |
32 |
CHEN H L, CHEN B, YI Y, et al Unconditionally stable ADI–BOR–FDTD algorithm for the analysis of rotationally symmetric geometries. IEEE Microwave and Wireless Components Letters, 2007, 17 (4): 304- 306.
doi: 10.1109/LMWC.2007.892991 |
33 | MUKHERJEE S, KARMAKAR S, GOSWAMI C, et al. Electromagnetic wave propagation modeling in Lorentzian DNG metamaterial by auxiliary differential equation based ADI-FDTD. Proc. of the 1st International Conference on Emerging Technology Trends in Electronics, Communication & Networking, 2012. DOI: 10.1109/ET2ECN.2012.6470071. |
34 | LI J X, JIANG H, ZHAO X M, et al Effective CNAD- and ADE-based CFS-PML formulations for truncating the dispersive FDTD domains. IEEE Antennas and Wireless Propagation Letters, 2015, 40 (14): 1267- 1270. |
[1] | Haolin JIANG, Yongjun XIE, Peiyu WU, Jianfeng ZHANG, Liqiang NIU. Unsplit-field higher-order nearly PML for arbitrary media in EM simulation [J]. Journal of Systems Engineering and Electronics, 2021, 32(1): 1-6. |
[2] | Liqiang NIU, Yongjun XIE, Haolin JIANG, Peiyu WU. Exponential time differencing based efficient SC-PML for RCS simulation [J]. Journal of Systems Engineering and Electronics, 2020, 31(4): 703-711. |
[3] | Kuisong Zheng, Tengjiang Ding, Hui Yu, and Zhaoguo Hou. Application of DFT in bi-static RCS calculation of complex electrically large targets [J]. Journal of Systems Engineering and Electronics, 2015, 26(4): 732-. |
[4] | Weijun Zhong, Chuangming Tong, Guorong Huang, and Yan Geng. New UWB imaging algorithm for multiple targets detection [J]. Journal of Systems Engineering and Electronics, 2011, 22(6): 905-909. |
[5] | Maoyan Wang, Chengwei Qiu, Jun Xu, Yuliang Dong, Hu Zheng, and Hailong Li. Mie series for electromagnetic scattering of chiral metamaterials sphere [J]. Journal of Systems Engineering and Electronics, 2011, 22(6): 885-891. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||