1 |
COSTA A, SILVA C, TORQUATO M, et al Parallel implementation of particle swarm optimization on FPGA. IEEE Trans. on Circuits and Systems II: Express Briefs, 2019, 66 (11): 1875- 1879.
doi: 10.1109/TCSII.2019.2895343
|
2 |
DU W B, YING W, YAN G, et al Heterogeneous strategy particle swarm optimization. IEEE Trans. on Circuits and Systems II: Express Briefs, 2017, 64 (4): 467- 471.
doi: 10.1109/TCSII.2016.2595597
|
3 |
SINGH P, ROSSI M, COUCKUYT I, et al Constrained multi-objective antenna design optimization using surrogates. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2017, 30, E2248.
doi: 10.1002/jnm.2248
|
4 |
LI H T, ZHOU J Z, KANG L, et al Optimization design of skin antenna based on Bayesian optimization. Proc. of the IEEE International Symposium on Microwave, Antenna, Propagation, and EMC Technologies, 2017, 78- 83.
|
5 |
WU Q, WANG H M, HONG W Multistage collaborative machine learning and its application to antenna modeling and optimization. IEEE Trans. on Antennas and Propagation, 2020, 68 (5): 3397- 3409.
doi: 10.1109/TAP.2019.2963570
|
6 |
KOZIEL S, OGURTSOV S Multi-objective design of antennas using variable-fidelity simulations and surrogate models. IEEE Trans. on Antennas and Propagation, 2013, 61 (12): 5931- 5939.
doi: 10.1109/TAP.2013.2283599
|
7 |
KOZIEL S, BEKASIEWICZ A, COUCKUYT I, et al Efficient multi-objective simulation-driven antenna design using co-Kriging. IEEE Trans. on Antennas and Propagation, 2014, 62 (11): 5900- 5905.
doi: 10.1109/TAP.2014.2354673
|
8 |
KOZIEL S, OGURTSOV S, ZIENIUTYCZ W, et al Fast simulation-driven design of a planar UWB dipole antenna with an integrated balun. IEEE Antennas and Propagation Letters, 2015, 14, 366- 369.
|
9 |
KOZIEL S, BEKASIEWICZ A, ZIENIUTYCZ W Expedited EM-driven multiobjective antenna design in highly dimensional parameter spaces. IEEE Antennas and Wireless Propagation Letters, 2014, 13, 631- 634.
doi: 10.1109/LAWP.2014.2313698
|
10 |
LIU B, ALIAKBARIAN H, MA Z K, et al An efficient method for antenna design optimization based on evolutionary computation and machine learning techniques. IEEE Trans. on Antennas and Propagation, 2014, 62 (1): 7- 18.
doi: 10.1109/TAP.2013.2283605
|
11 |
JAIN S K, PATNAIK A, SINHA S N Design of custom-made stacked patch antennas: a machine learning approach. International Journal of Machine Learning and Cybernetics, 2013, 4, 189- 194.
doi: 10.1007/s13042-012-0084-x
|
12 |
TAK J, KANTEMUR A, SHARMA Y, et al A 3-D-printed W-band slotted waveguide array antenna optimized using machine learning. IEEE Antennas and Wireless Propagation Letters, 2018, 17 (11): 2008- 2012.
doi: 10.1109/LAWP.2018.2857807
|
13 |
LYU W L, XUE P, YANG F, et al An efficient Bayesian optimization approach for automated optimization of analog circuits. IEEE Trans. on Circuits and Systems I: Regular Papers, 2018, 65 (6): 1954- 1967.
doi: 10.1109/TCSI.2017.2768826
|
14 |
COWEN-RIVERS A, LYU W L, WANG Z, et al. HEBO: heteroscedastic evolutionary Bayesian optimization. https://arXiv:2012.03826.
|
15 |
LIU J W, TUNGUZ B, TITERICZ G. GPU accelerated exhaustive search for optimal ensemble of black-box optimization algorithms. https://arXiv:2012.04201.
|
16 |
AWAD N H, SHALA G, DENG D, et al. Squirrel: a switching hyperparameter optimizer. https://arXiv:2012.08180.
|
17 |
SAZANOVICH M, NIKOLSKAYA A, BELOUSOV Y, et al. Solving black-box optimization challenge via learning search space partition for local Bayesian optimization. https://arXiv:2012.10335.
|
18 |
WU J J, CAO M L, SHAN L P, et al. Higher performance for AutoML: the benefit of various ensemble Bayesian optimization strategy. https://valohaichirpprod.blob.core.windows.net/papers/duxiaoman.pdf.
|
19 |
ALLEN J C, ARCEO D, HANSEN P Optimal lossy matching by Pareto fronts. IEEE Trans. on Circuits and Systems II: Express Briefs, 2008, 55 (6): 497- 501.
doi: 10.1109/TCSII.2007.916721
|
20 |
LEDESMA S, RUIZ-PINALES J, CERDA-VILLAFANA G, et al A hybrid method to design wire antennas: design and optimization of antennas using artificial intelligence. IEEE Antennas and Propagation Magazine, 2015, 57 (4): 23- 31.
doi: 10.1109/MAP.2015.2453912
|
21 |
ALVAREZ M A. Multiple-output Gaussian processes. http://gpss.cc/gpss17/slides/multipleOutputGPs.pdf.
|
22 |
ALVAREZ M A, ROSASCO L, LAWRENCE N D Kernels for vector-valued functions: a review. Foundations and Trends in Machine Learning, 2012, 4 (3): 195- 266.
doi: 10.1561/2200000036
|
23 |
WANG B, CHEN T Gaussian process regression with multiple response variables. Chemometrics and Intelligent Laboratory Systems, 2015, 142, 159- 165.
doi: 10.1016/j.chemolab.2015.01.016
|
24 |
MORENO-MUNOZ P, ARTES-RODRIGUEZ A, ALVAREZ M A Heterogeneous multi-output Gaussian process prediction. Proc. of the International Conference on Neural Information Processing Systems, 2018, 6711- 6720.
|
25 |
SWERSKY K, SNOEK J, ADAMS R P Multi-task Bayesian optimization. Advances in Neural Information Processing Systems, 2013, 2004- 2012.
|
26 |
RASMUSSEN C E, WILLIAMS C K I. Gaussian processes for machine learning. Cambridge, MA: MIT Press, 2006.
|
27 |
SHAHRIARI B, SWERSKY K, WANG Z, et al Taking the human out of the loop: a review of Bayesian optimization. Proceedings of the IEEE, 2016, 104 (1): 148- 175.
doi: 10.1109/JPROC.2015.2494218
|
28 |
NOGUEIRA F. Bayesian optimization: open source constrained global optimization tool for Python. https://github.com/fmfn/BayesianOptimization.
|
29 |
GPy. A Gaussian process framework in python. http://github.com/SheffieldML/GPy.
|
30 |
GAFT. A genetic algorithm framework in python. http://github.com/SheffieldML/GPy.
|