Journal of Systems Engineering and Electronics ›› 2022, Vol. 33 ›› Issue (6): 12691285.doi: 10.23919/JSEE.2022.000147
• CONTROL THEORY AND APPLICATION • Previous Articles
Yang XU^{1}^{,}^{2}(), Weiming ZHENG^{3}(), Delin LUO^{3}^{,}*(), Haibin DUAN^{4}()
Received:
20211028
Online:
20221218
Published:
20221224
Contact:
Delin LUO
Email:yang.xu@nwpu.edu.cn;zwming@stu.xmu.edu.cn;luodelin1204@xmu.edu.cn;hbduan@buaa.edu.cn
About author:
Supported by:
Yang XU, Weiming ZHENG, Delin LUO, Haibin DUAN. Dynamic affine formation control of networked underactuated quadrotor UAVs with threedimensional patterns[J]. Journal of Systems Engineering and Electronics, 2022, 33(6): 12691285.
Table 1
Nomenclature"
Symbol  Description 
 The 
 Undirected graph 
 Stress matrix 
 Inertia frame, body frame 
 Mass, gravitational acceleration, inertial matrix 
 Position, linear velocity 
 Unit quaternion, angular velocity 
 Rotation matrix 
 Thrust input, torque input 
 Target configuration, desired reference linear velocity 
 Linear velocity tracking error 
 Intermediary control input 
 Auxiliary variables 
 Auxiliary error variables 
 Auxiliary control input 
 Desired attitude, attitude tracking error 
 Desired angular velocity, angular velocity tracking error 
 Positive scalar gains 
 Positive scalar gains 
 Positive scalar gains 
1 
HUA M D, HAMEL T, MORIN P, et al Introduction to feedback control of underactuated VTOL vehicles: a review of basic control design ideas and principles. IEEE Control Systems Magazine, 2013, 33 (1): 61 75.
doi: 10.1109/MCS.2012.2225931 
2 
XU Y, LUO D L, YOU Y C, et al New advances in multiple autonomous aerial robots formation control technology. Science China Technological Sciences, 2019, 62 (10): 1871 1872.
doi: 10.1007/s1143101894579 
3 
LUO D L, SHAO J, XU Y, et al Coevolution pigeoninspired optimization with cooperationcompetition mechanism for multiUAV cooperative region search. Applied Sciences, 2019, 9 (5): 827.
doi: 10.3390/app9050827 
4 
QIU H X, DUAN H B A multiobjective pigeoninspired optimization approach to UAV distributed flocking among obstacles. Information Sciences, 2020, 509, 515 529.
doi: 10.1016/j.ins.2018.06.061 
5 
ZULU A, JOHN S A review of control algorithms for autonomous quadrotors. Open Journal of Applied Sciences, 2014, 4 (14): 547 556.
doi: 10.4236/ojapps.2014.414053 
6 
YU Y S, DING X L A global tracking controller for underactuated aerial vehicles: design, analysis, and experimental tests on quadrotor. IEEE/ASME Trans. on Mechatronics, 2016, 21 (5): 2499 2511.
doi: 10.1109/TMECH.2016.2558678 
7  KANG B, MIAO Y, LIU F, et al A secondorder sliding mode controller of quadrotor UAV based on PID sliding mode surface with unbalanced load. Journal of Systems Science and Complexity, 2020, 34 (1): 520 536. 
8 
DONG X W, YU B, SHI Z Y, et al Timevarying formation control for unmanned aerial vehicles: theories and applications. IEEE Trans. on Control Systems Technology, 2015, 23 (1): 340 348.
doi: 10.1109/TCST.2014.2314460 
9  DONG X W, ZHOU Y, REN Z, et al Timevarying formation tracking for secondorder multiagent systems subjected to switching topologies with application to quadrotor formation flying. IEEE Trans. on Industrial Electronics, 2016, 64 (6): 5014 5024. 
10 
DONG X W, ZHOU Y, REN Z, et al Timevarying formation control for unmanned aerial vehicles with switching interaction topologies. Control Engineering Practice, 2016, 46, 26 36.
doi: 10.1016/j.conengprac.2015.10.001 
11 
ZHANG W, DONG C Y, RAN M P, et al Fully distributed timevarying formation tracking control for multiple quadrotor vehicles via finitetime convergent extended state observer. Chinese Journal of Aeronautics, 2020, 33 (11): 2907 2920.
doi: 10.1016/j.cja.2020.03.004 
12  OH K K, PARK H, AHN H S A survey of multiagent formation control. Automatica, 2015, 53, 429 448. 
13  HAN Z M, LIN Z Y, FU M Y, et al Distributed coordination in multiagent systems: a graph Laplacian perspective. Frontiers of Information Technology & Electronic Engineering, 2015, 16 (6): 429 448. 
14 
ZHU B, XIE L H, HAN D, et al A survey on recent progress in control of swarm systems. Science China Information Sciences, 2017, 60 (7): 070201.
doi: 10.1007/s1143201690882 
15  XU Y, LAI S P, LI J X, et al Concurrent optimal trajectory planning for indoor quadrotor formation switching. Journal of Intelligent & Robotic Systems, 2019, 94 (2): 503 520. 
16 
WANG J R, LUO X Y, LI X L Sliding mode formation control of nonlinear multiagent systems with local Lipschitz continuous dynamics. Journal of Systems Science and Complexity, 2019, 32 (6): 759 777.
doi: 10.1007/s1142401872991 
17 
HU J L, SUN X X, HE L Formation tracking for nonlinear multiagent systems with input and output quantization via adaptive output feedback control. Journal of Systems Science and Complexity, 2020, 33 (2): 401 425.
doi: 10.1007/s1142401980872 
18  SUN Z Y, MOU S S, DEGHAT M, et al Finite time distributed distanceconstrained shape stabilization and flocking control for ddimensional undirected rigid formations . International Journal of Robust and Nonlinear Control, 2019, 26 (13): 2824 2844. 
19 
ZHAO S Y, ZELAZO D Translational and scaling formation maneuver control via a bearingbased approach. IEEE Trans. on Control of Network Systems, 2017, 4 (3): 429 438.
doi: 10.1109/TCNS.2015.2507547 
20 
HAN Z M, WANG L L, LIN Z Y, et al Formation control with size scaling via a complex Laplacianbased approach. IEEE Trans. on Cybernetics, 2016, 46 (10): 2348 2359.
doi: 10.1109/TCYB.2015.2477107 
21 
HAN Z M, GUO K X, XIE L H, et al Integrated relative localization and leaderfollower formation control. IEEE Trans. on Automatic Control, 2019, 64 (1): 20 34.
doi: 10.1109/TAC.2018.2800790 
22  RANJBAR M, BEHESHTI M T, BOLOUKI S Eventbased formation control of networked multiagent systems using complex Laplacian under directed topology. IEEE Control Systems Letters, 2020, 5 (3): 1085 1090. 
23 
ZHAO S Y Affine formation maneuver control of multiagent systems. IEEE Trans. on Automatic Control, 2018, 63 (12): 4140 4155.
doi: 10.1109/TAC.2018.2798805 
24 
XU Y, LI D Y, LUO D L, et al Twolayer distributed hybrid affine formation control of networked EulerLagrange systems. Journal of the Franklin Institute, 2019, 356 (4): 2172 2197.
doi: 10.1016/j.jfranklin.2018.11.029 
25 
XU Y, LUO D L, LI D Y, et al Targetenclosing affine formation control of twolayer networked spacecraft with collision avoidance. Chinese Journal of Aeronautics, 2019, 32 (12): 2679 2693.
doi: 10.1016/j.cja.2019.04.016 
26  XU Y, ZHAO S Y, LUO D L, et al Affine formation maneuver control of highorder multiagent systems over directed networks. Automatica, 2020, 118, 198994. 
27  XU Y, LIN Z Y, ZHAO S Y Distributed affine formation tracking control of multiple fixedwing UAVs. Proc. of the 39th Chinese Control Conference, 2020, 4712 4717. 
28  LI D Y, MA G F, XU Y, et al. Layered affine formation control of networked uncertain systems: a fully distributed approach over directed graphs. IEEE Trans. on Cybernetics, 2021, 51(12): 6119−6130. 
29 
LI D Y, CAO K, KONG L H, et al Fully distributed cooperative circumnavigation of networked unmanned aerial vehicles. IEEE/ASME Trans. on Mechatronics, 2021, 26 (2): 709 718.
doi: 10.1109/TMECH.2021.3055654 
30  LIN Y J, LIN Z Y, SUN Z Y, et al. A unified approach for finitetime global stabilization of affine, rigid and translational formation. IEEE Trans. on Automatic Control, 2021, 67(4): 1869−1881. 
31 
YANG J Y, XIAO F, CHEN T W Formation tracking of nonholonomic systems on the special Euclidean group under fixed and switching topologies: an affine formation strategy. SIAM Journal on Control and Optimization, 2021, 59 (4): 2850 2874.
doi: 10.1137/20M1328130 
32  BENZEMRANE K, SANTOSUOSSO G L, DAMM G Unmanned aerial vehicle speed estimation via nonlinear adaptive observers. Proc. of the American Control Conference, 2007, 985 990. 
33  ABDESSAMEUD A, POLUSHIN I G, TAYEBI A Motion coordination of thrustpropelled underactuated vehicles with intermittent and delayed communications. Systems & Control Letters, 2015, 79, 15 22. 
34 
ZOU Y, MENG Z Y Distributed hierarchical control for multiple vertical takeoff and landing UAVs with a distancebased network topology. International Journal of Robust and Nonlinear Control, 2019, 29 (9): 2573 2588.
doi: 10.1002/rnc.4513 
35  ZHAO W, LIU H, LEWIS F L Robust formation control for cooperative underactuated quadrotors via reinforcement learning. IEEE Trans. on Neural Networks and Learning Systems, 2020, 32 (10): 302371. 
36 
ZOU Y Nonlinear robust adaptive hierarchical sliding mode control approach for quadrotors. International Journal of Robust and Nonlinear Control, 2017, 27 (6): 925 941.
doi: 10.1002/rnc.3607 
37  ROBERTS A, TAYEBI A Adaptive position tracking of VTOL UAVs. IEEE Trans. on Robotics, 2010, 27 (1): 129 142. 
38 
ZHU B, HUO W Nonlinear control for a modelscaled helicopter with constraints on rotor thrust and fuselage attitude. Acta Automatica Sinica, 2014, 40 (11): 2654 2664.
doi: 10.1016/S18741029(14)604110 
39  SLOTINE J J, LI W P. Applied nonlinear control. Englewood Cliffs: Prentice Hall, 1991. 
40 
CONG Y Z, DU H B, JIN Q C, et al Formation control for multiquadrotor aircraft: connectivity preserving and collision avoidance. International Journal of Robust and Nonlinear Control, 2020, 30 (6): 2352 2366.
doi: 10.1002/rnc.4886 
41 
HU J W, WANG M, ZHAO C H, et al Formation control and collision avoidance for multiUAV systems based on Voronoi partition. Science China Technological Sciences, 2020, 63 (1): 65 72.
doi: 10.1007/s1143101894499 
42 
HUANG Y F, LIU W, LI B, et al Finitetime formation tracking control with collision avoidance for quadrotor UAVs. Journal of the Franklin Institute, 2020, 357 (7): 4034 4058.
doi: 10.1016/j.jfranklin.2020.01.014 
43 
SHANG W, JIN G H, ZHANG D D, et al Adaptive fixed time nonsingular terminal slidingmode control for quadrotor formation with obstacle and interquadrotor avoidance. IEEE Access, 2021, 9, 60640 60657.
doi: 10.1109/ACCESS.2021.3074316 
44  ENDO M, IBUKI T, SAMPEI M Collisionfree formation control for quadrotor networks based on distributed quadratic programs. Proc. of the American Control Conference, 2019, 3335 3340. 
45  GHOMMAM J, LUQUEVEGA L F, SAAD M Distancebased formation control for quadrotors with collision avoidance via Lyapunov barrier functions. International Journal of Aerospace Engineering, 2020, 2020, 2069631. 
46 
ZHAO E J, ZHONG Z N, ZHENG X Finitetime control of formation system for multiple flight vehicles subject to actuator saturation. Journal of Systems Engineering and Electronics, 2020, 31 (5): 1019 1030.
doi: 10.23919/JSEE.2020.000076 
47 
QI D, HU J H, LIANG X L, et al Research on consensus of multiagent systems with and without input saturation constraints. Journal of Systems Engineering and Electronics, 2021, 32 (4): 947 955.
doi: 10.23919/JSEE.2021.000081 
48 
DING STEVEN X C, LI L L, JIANG B Unified control and detection framework and its applications: a review, some new results, and future perspective. Journal of Systems Engineering and Electronics, 2021, 32 (5): 995 1013.
doi: 10.23919/JSEE.2021.000085 
[1]  Juan Antonio VAZQUEZ TREJO, Adrien GUENARD, Manuel ADAMMEDINA, JeanChristophe PONSART, Laurent CIARLETTA, Damiano ROTONDO, Didier THEILLIOL. Eventtriggered leaderfollowing formation control for multiagent systems under communication faults: application to a fleet of unmanned aerial vehicles [J]. Journal of Systems Engineering and Electronics, 2021, 32(5): 10141022. 
[2]  Kada BELKACEM, Khalid MUNAWAR, Shafique Shaikh MUHAMMAD. Distributed cooperative control of autonomous multiagent UAV systems using smooth control [J]. Journal of Systems Engineering and Electronics, 2020, 31(6): 12971307. 
[3]  Enjiao ZHAO, Zenan ZHONG, Xin ZHENG. Finitetime control of formation system for multiple flight vehicles subject to actuator saturation [J]. Journal of Systems Engineering and Electronics, 2020, 31(5): 10191030. 
[4]  Yandong LI, Ling ZHU, Yuan GUO. Observerbased multivariable fixedtime formation control of mobile robots [J]. Journal of Systems Engineering and Electronics, 2020, 31(2): 403414. 
[5]  Kun Zhang and Xiaoguang Gao. Distributed tracking control of unmanned aerial vehicles under wind disturbance and model uncertainty [J]. Journal of Systems Engineering and Electronics, 2016, 27(6): 12621271. 
[6]  Li Song, Qinghe Wu, Di Yu, and Yinqiu Wang. Distributed stereoscopic rotating formation control of networks of secondorder agents [J]. Journal of Systems Engineering and Electronics, 2013, 24(3): 480. 
[7]  Xiaoyuan Luo, Nani Han, and Xinping Guan. Leaderfollowing consensus protocols for formation control of multiagent network [J]. Journal of Systems Engineering and Electronics, 2011, 22(6): 991997. 
Viewed  
Full text 


Abstract 

