Journal of Systems Engineering and Electronics ›› 2023, Vol. 34 ›› Issue (6): 14471464.doi: 10.23919/JSEE.2023.000115
• AUTONOMOUS DECISION AND COOPERATIVE CONTROL OF UAV SWARMS • Previous Articles Next Articles
Ruhao JIANG^{1}^{,}^{2}(), He LUO^{1}^{,}^{2}^{,}^{3}(), Yingying MA^{1}^{,}^{2}(), Guoqiang WANG^{1}^{,}^{2}^{,}^{3}^{,}*()
Received:
20220830
Online:
20231218
Published:
20231229
Contact:
Guoqiang WANG
Email:jiangrh@mail.hfut.edu.cn;luohe@hfut.edu.cn;mayingying@mail.hfut.edu.cn;gqwang2017@hfut.edu.cn
About author:
Supported by:
Ruhao JIANG, He LUO, Yingying MA, Guoqiang WANG. Multicriteria game approach to airtoair combat tactical decisions for multiple UAVs[J]. Journal of Systems Engineering and Electronics, 2023, 34(6): 14471464.
Table 1
Parameter definitions of the ACTDMU problem"
Variable  Description 
Our UAV formation  
Foe UAV formation  
The  
The  
A set of tactics for  
A set of tactics for  
The position and state of  
The position and state of  
The position and state sets of  
The position and state sets of 
Table 2
Partial binary relations of noncooperative situations"
Partial binary relation  Description  Constraint condition 
Table 3
Threshold scaling coefficient settings of the PNEPRTC algorithm for different datasets"
Number  Set 1  Set 2  Set 3  
1  4×4×8  0.6  16×16×8  0.6  8×12×8  0.7 
2  8×8×8  0.7  16×16×10  0.7  8×16×8  0.7 
3  12×12×8  0.7  16×16×12  0.8  12×18×8  0.7 
4  16×16×8  0.7  16×16×14  0.8  12×24×8  0.7 
5  20×20×8  0.7  16×16×16  0.8  16×24×8  0.7 
6  24×24×8  0.7  16×16×18  0.8  16×32×8  0.7 
7  28×28×8  0.7  16×16×20  0.8  20×30×8  0.7 
8  32×32×8  0.7  16×16×22  0.9  20×40×8  0.7 
9  36×36×8  0.7  16×16×24  0.9  24×36×8  0.7 
10  40×40×8  0.7  16×16×26  0.9  24×48×8  0.7 
11  50×50×8  0.7  16×16×30  1.0  30×60×8  0.7 
12  60×60×8  0.7  16×16×40  1.0  40×70×8  0.7 
13  70×70×8  0.7  16×16×60  1.0  50×80×8  0.7 
14  80×80×8  0.7  16×16×80  1.0  60×100×8  0.6 
15  100×100×8  0.7  16×16×100  1.0  70×120×8  0.6 
Table 5
UAV position and state corresponding to the selected tactics"
R’tactics  B’tactics  
Table 6
Vector payoff matrices and corresponding executions of tactics for the selected strategy profiles"
Tactic  
0.268969,0.281608,0.290261,0.455265) 0.268914,0.255821,0.246304,0.00378254)  0.499388,0.499952,0.49992,0.499755) 0,0,0,0)  
0.268969,0.282472,0.2271,0.473773) 0.268914,0.254891,0.30651,0.0000731)  0.499388,0.499953,0.499891,0.499857) 0,0,0,0) 
Table 7
Three evaluation metrics for the MGACTDMU, MADM and random approaches"
Tactics  Approaches  Offensive  Neutral  Defensive 
MGACTDMU MADM Random  0.01721 0.0154 0.00669  0.01836 0.01742 0.00777  0.01912 0.01787 0.00725  
MGACTDMU MADM Random  0.36 0.22 0.11  0.42 0.19 0.13  0.38 0.27 0.07  
MGACTDMU MADM Random  0.8461 1.2978 1.6296  0.9469 1.3804 1.7625  0.8983 1.1800 1.8243 
1  SUN Z X, PIAO H Y, YANG Z, et al Multiagent hierarchical policy gradient for air combat tactics emergence via selfplay. Engineering Applications of Artificial Intelligence, 2022, 98, 104112. 
2  XU X M, YANG R N, FU Y Situation assessment for air combat based on novel semisupervised naive Bayes. Journal of Systems Engineering and Electronics, 2018, 29 (4): 768 779. 
3  JIANG Y Y, GAO Y, SONG W Q, et al Bibliometric analysis of UAV swarms. Journal of Systems Engineering and Electronics, 2022, 33 (2): 406 425. 
4  JEREMY J, FREDERICK L, DENNIS E. Deployment and flight operations of a large scale UAS combat swarm: results from DARPA service academies swarm challenge. Proc. of the International Conference on Unmanned Aircraft Systems, 2018: 12−15. 
5 
JOAO P, MARCOS R, ANDRE N, et al Machine learning to improve situational awareness in beyond visual range air combat. IEEE Latin America Transactions, 2022, 20 (8): 2039 2045.
doi: 10.1109/TLA.2022.9853232 
6 
YANG Z, SUN Z X, PIAO H Y, et al Online hierarchical recognition method for target tactical intention in beyondvisualrange air combat. Defence Technology, 2022, 18, 1349 1361.
doi: 10.1016/j.dt.2022.02.001 
7 
SHIN H, LEE J, KIM H, et al An autonomous aerial combat framework for twoontwo engagements based on basic fighter maneuvers. Aerospace Science and Technology, 2018, 72, 305 315.
doi: 10.1016/j.ast.2017.11.014 
8 
ISHWARYA M S, ASWANI K C Quantuminspired ensemble approach to multiattributed and multiagent decisionmaking. Applied Soft Computing, 2021, 106, 107283.
doi: 10.1016/j.asoc.2021.107283 
9  ZHANG Q H, YANG C C, WANG G Y A sequential threeway decision model with intuitionistic fuzzy numbers. IEEE Trans. on Systems, Man, and Cybernetics: System, 2021, 51 (5): 2640 2652. 
10 
SELVACHANDRAN G, QUEK S, HAN L, et al A new design of mamdani complex fuzzy inference system for multiattribute decision making problems. IEEE Trans. on Fuzzy Systems, 2021, 29 (4): 716 730.
doi: 10.1109/TFUZZ.2019.2961350 
11 
ALKAHER D, MOSHAIOV A Dynamicescapezone to avoid energybleeding coasting missile. Journal of Guidance, Control, and Dynamics, 2015, 38 (10): 1908 1921.
doi: 10.2514/1.G000776 
12  LI S Y, CHEN M, WU Q X, et al Threat sequencing of multiple UCAVs with incomplete information based on game theory. Journal of Systems Engineering and Electronics, 2022, 33 (4): 986 996. 
13 
ZHE Y A coalitional extension of generalized fuzzy games. Fuzzy Sets and Systems, 2020, 383, 68 79.
doi: 10.1016/j.fss.2019.06.010 
14 
BACKWELL D An analog of the minimax theorem for vector payoffs. Pacific Journal of Mathematics, 1956, 6 (1): 1 8.
doi: 10.2140/pjm.1956.6.1 
15 
RETTIEVA A Dynamic multicriteria games with asymmetric players. Journal of Global Optimization, 2022, 83 (3): 521 537.
doi: 10.1007/s10898020009295 
16 
CLEMENTE M, FERNANDEZ F, PUERTO J Paretooptimal security strategies in matrix games with fuzzy payoffs. Fuzzy Sets and Systems, 2011, 176 (1): 36 45.
doi: 10.1016/j.fss.2011.03.006 
17 
FERNANDEZ F, MONROY L, PUERTO J Multicriteria goal games. Journal of Optimization Theory and Applications, 1998, 99 (2): 403 421.
doi: 10.1023/A:1021726311384 
18 
RADJEF M S, FAHEM K A note on ideal Nash equilibrium in multicriteria games. Applied Mathematics Letters, 2008, 21 (11): 1105 1111.
doi: 10.1016/j.aml.2007.12.009 
19 
ZAPATA A, MARMOL A, MONROY L, et al A maxmin approach for the equilibria of vectorvalued games. Group Decision and Negotiation, 2019, 28 (2): 415 432.
doi: 10.1007/s1072601896084 
20 
QUANT M, BORM P, FIESTRASJANEIRO G On properness and protectiveness in twoperson multicriteria games. Journal of Optimization Theory and Applications, 2009, 140 (3): 499 512.
doi: 10.1007/s1095700894645 
21 
FAHEM K, RADJEF M S Properly efficient Nash equilibrium in multicriteria noncooperative games. Mathematical Methods of Operations Research, 2015, 82 (2): 175 193.
doi: 10.1007/s001860150508y 
22 
ZELENY M Games with multiple payoffs. International Journal of Game Theory, 1975, 4 (4): 179 191.
doi: 10.1007/BF01769266 
23 
MARCO G, MORGAN J A refinement concept for equilibria in multicriteria games via stable scalarizations. International Game Theory Review, 2007, 9 (2): 169 181.
doi: 10.1142/S0219198907001345 
24 
NOVIKOVA N M, POSPELOVA I I Scalarization method in multicriteria games. Computational Mathematics and Mathematical Physics, 2018, 58 (2): 180 189.
doi: 10.1134/S0965542518020112 
25 
COOK W D Zerosum games with multiple goals. Naval Research Logistics, 1976, 23 (4): 615 621.
doi: 10.1002/nav.3800230406 
26 
NISHIZAKI I, NOTSU T Nondominated equilibrium solutions of a multiobjective twoperson nonzerosum game and corresponding mathematical programming problem. Journal of Optimization Theory and Applications, 2007, 135 (2): 217 239.
doi: 10.1007/s1095700792456 
27 
HONG J M, KIM M H, LEE G M On linear vector program and vector matrix game equivalence. Optimization Letters, 2012, 6 (2): 231 240.
doi: 10.1007/s1159001002373 
28 
CHANDRA S, AGGARWAL A On solving matrix games with payoffs of triangular fuzzy numbers: certain observations and generalizations. European Journal of Operational Research, 2015, 246 (2): 575 581.
doi: 10.1016/j.ejor.2015.05.011 
29 
PENG H G, WANG X K, WANG T L, et al Multicriteria game model based on the pairwise comparisons of strategies with Znumbers. Applied Soft Computing, 2019, 74, 451 465.
doi: 10.1016/j.asoc.2018.10.026 
30 
ZYCHOWSKI A, GUPTA A, MANDZIUK J, et al Addressing expensive multiobjective games with postponed preference articulation via memetic coevolution. KnowledgeBased Systems, 2018, 154, 17 31.
doi: 10.1016/j.knosys.2018.05.012 
31 
HAREL M, MOSHAIOV A, ALKAHER D Rationalizable strategies for the navigator–target–missile game. Journal of Guidance, Control, and Dynamics, 2020, 43 (6): 1129 1142.
doi: 10.2514/1.G004875 
32  YOUSFIHALIMI N, RADJEF M S, SLIMANI H Refinement of pure Pareto Nash equilibria in finite multicriteria games using preference relations. Annals of Operations Research, 2018, 267 (1): 607 628. 
33 
HAMEL A H, LOHNE A A set optimization approach to zerosum matrix games with multidimensional payoffs. Mathematical Methods of Operations Research, 2018, 88 (3): 369 397.
doi: 10.1007/s001860180639z 
34  MA Y Y, WANG G Q, HU X X, et al Twostage hybrid heuristic search algorithm for novel weapon target assignment problems. Computers & Industrial Engineering, 2021, 162, 107717. 
35 
YAO Z X, MING L, CHEN Z J, et al Mission decisionmaking method of multiaircraft cooperatively attacking multitarget based on game theoretic framework. Chinese Journal of Aeronautics, 2016, 29 (6): 1685 1694.
doi: 10.1016/j.cja.2016.09.006 
36 
ZHAO K Y, LI L, CHEN Z Q, et al A survey: optimization and applications of evidence fusion algorithm based on DempsterShafer theory. Applied Soft Computing, 2022, 124, 109075.
doi: 10.1016/j.asoc.2022.109075 
37 
SU M C, LAI S C, LIN S C, et al A new approach to multiaircraft air combat assignments. Swarm and Evolutionary Computation, 2012, 6, 39 46.
doi: 10.1016/j.swevo.2012.03.003 
38  ZHOU L P, WAN S P, DONG J Y A fermatean fuzzy ELECTRE method for multicriteria group decisionmaking. Informatica, 2022, 33 (1): 181 224. 
39 
JOSE R F, SALVATORE G, BERNARD R ElectreScore: a first outranking based method for scoring actions. European Journal of Operational Research, 2022, 297, 986 1005.
doi: 10.1016/j.ejor.2021.05.017 
40 
LOTFI A, DJAAFAR Z, KAMAL A, et al A novel epsilondominance Harris Hawks optimizer for multiobjective optimization in engineering design problems. Neural Computing and Applications, 2022, 34, 17007 17036.
doi: 10.1007/s00521022073529 
41  SANDHOLM T, GILPIN A, CONITZER V Mixedinteger programming methods for finding Nash equilibria. Proc. of the 20th National Conference on Artificial Intelligence, 2005, 2, 495 501. 
42 
SHANG K A survey on the hypervolume indicator in evolutionary multiobjective optimization. IEEE Trans. on Evolutionary Computation, 2021, 25 (1): 1 20.
doi: 10.1109/TEVC.2020.3013290 
43 
REDDY M J, KUMAR D N Multiobjective differential evolution with application to reservoir system optimization. Journal of Computing in Civil Engineering, 2007, 21 (2): 136 146.
doi: 10.1061/(ASCE)08873801(2007)21:2(136) 
44 
ZITZLER E, DEB K, THIELE L Comparison of multiobjective evolutionary algorithms: empirical results. Evolutionary Computation, 2000, 8 (2): 173 195.
doi: 10.1162/106365600568202 
45 
WU J H, ZHANG D Q, JIANG C, et al On reliability analysis method through rotational sparse grid nodes. Mechanical Systems and Signal Processing, 2021, 147, 107106.
doi: 10.1016/j.ymssp.2020.107106 
46  SHAW R L. Fighter combat: tactics and maneuvering. Maryland: The United States Naval Institute Annapolis, 1985. 
47  HAN Y T, ZHOU Q B, DUAN F Q A game strategy model in the digital curling system based on NFSP. Complex & Intelligent Systems, 2021, 8, 1857 1863. 
48  HU X W, LUO P C, ZHANG X N, et al Improved ant colony optimization for weapontarget assignment. Mathematical Problems in Engineering, 2018, 2018, 6481635. 
[1]  Wei Zhou and Zeshui Xu. Modeling and applying credible interval intuitionistic fuzzy reciprocal preference relations in group decision making [J]. Systems Engineering and Electronics, 2017, 28(2): 301314. 
[2] 
Qi Yue1, Zhiping Fan, and Lihua Shi.
New approach to determine the priorities from interval fuzzy preference relations [J]. Journal of Systems Engineering and Electronics, 2011, 22(2): 267273. 
[3]  Shengbao Yao and Wan’an Cui. Method for multiattribute group decisionmaking based on the compromise weights [J]. Journal of Systems Engineering and Electronics, 2010, 21(4): 591597. 
[4]  Zeshui Xu1,2,*. Interactive group decision making procedure based on uncertain multiplicative linguistic preference relations [J]. Journal of Systems Engineering and Electronics, 2010, 21(3): 408415. 
[5] 
Yejun Xu1,?,Qingli Da2,and Xinwang Liu2.
Some properties of linguistic preference relation and its ranking in group decision making [J]. Journal of Systems Engineering and Electronics, 2010, 21(2): 244249. 
[6]  Xiaohui Yu and Qiang Zhang. Fuzzy Nash equilibrium of fuzzy nperson noncooperative game [J]. Journal of Systems Engineering and Electronics, 2010, 21(1): 4756. 
Viewed  
Full text 


Abstract 

