
Journal of Systems Engineering and Electronics ›› 2025, Vol. 36 ›› Issue (5): 1146-1160.doi: 10.23919/JSEE.2024.000052
• ELECTRONICS TECHNOLOGY • Previous Articles
Shibo ZHANG(
), Hongyuan GAO(
), Yumeng SU(
), Rongchen SUN(
)
Received:2023-06-03
Online:2025-10-18
Published:2025-10-24
Contact:
Hongyuan GAO
E-mail:liangziyanhua@126.com;gaohongyuan@hrbeu.edu.cn;suyumeng1994@126.com;rongchensun@hrbeu.edu.cn
About author:Supported by:Shibo ZHANG, Hongyuan GAO, Yumeng SU, Rongchen SUN. Physical-layer secure hybrid task scheduling and resource management for fog computing IoT networks[J]. Journal of Systems Engineering and Electronics, 2025, 36(5): 1146-1160.
Table 1
Simulation parameter settings"
| Parameter | Value |
| Total number of FCSs | 12 |
| Task size for each IoT device in one time slot/(kbits) | [2,20] |
| Noise power density/(dBm/Hz) | −174 |
| Total number of SRBs | 10 |
| Transmission power of each IoT device/dBm | 40 |
| SRB bandwidth/MHz | 5 |
| Total number of IoT devices | 25 |
| Maximum latency tolerance threshold of each IoT device/ms | [80, 400] |
| Total number of eavesdroppers | 20 |
| CPU processing rate of each FCS/(cycles/s) | [5,9]×1010 |
| CPU cycles required for processing 1 bit data/(cycles/bit) | 104 |
| Accusation delay/ms | 5 |
| Maximum number of CRBs | 8 |
| Pre-ratio | 0.15 |
| Chaotic sequence initial value | 0.18 |
| Control factor | 0.3 |
| Control factor | 0.05×(1− |
| Control factor | 0.5 |
| Control factor | 0.15 |
| Control factor | 0.05 |
| Swarm size | 20 |
| Selection threshold | 0.4 |
| Selection threshold | 0.8 |
| Maximum iteration number |
| 1 |
VERMA S, KAUR S, KHAN M A, et al Toward green communication in 6G-enabled massive Internet of Things. IEEE Internet of Things Journal, 2021, 8 (7): 5408- 5415.
doi: 10.1109/JIOT.2020.3038804 |
| 2 | DAO N N, PHAM Q V, TU N H, et al Survey on aerial radio access networks: toward a comprehensive 6G access infrastructure. IEEE Communications Surveys & Tutorials, 2021, 23 (2): 1193- 1225. |
| 3 |
ISLAM M T, WU H M, KARUNASEKERA S, et al SLA-based scheduling of spark jobs in hybrid cloud computing environments. IEEE Trans. on Computers, 2022, 71 (5): 1117- 1132.
doi: 10.1109/TC.2021.3075625 |
| 4 |
WU C, TOOSI A N, BUYYA R, et al Hedonic pricing of cloud computing services. IEEE Trans. on Cloud Computing, 2021, 9 (1): 182- 196.
doi: 10.1109/TCC.2018.2858266 |
| 5 |
YAO D Z, YU C, YANG L T, et al Using crowdsourcing to provide QoS for mobile cloud computing. IEEE Trans. on Cloud Computing, 2019, 7 (2): 344- 356.
doi: 10.1109/TCC.2015.2513390 |
| 6 |
POWELL C, DESINIOTIS C, DEZFOULI B The fog development kit: a platform for the development and management of fog systems. IEEE Internet of Things Journal, 2020, 7 (4): 3198- 3213.
doi: 10.1109/JIOT.2020.2966405 |
| 7 |
RAHMAN F H, NEWAZ S H S, AU T W, et al Off-street vehicular fog for catering applications in 5G/B5G: a trust-based task mapping solution and open research issues. IEEE Access, 2020, 8, 117218- 117235.
doi: 10.1109/ACCESS.2020.3004738 |
| 8 |
XIA Z Q, ZHANG Y C, GU K, et al Secure multi-dimensional and multi-angle electricity data aggregation scheme for fog computing-based smart metering system. IEEE Trans. on Green Communications and Networking, 2022, 6 (1): 313- 328.
doi: 10.1109/TGCN.2021.3122793 |
| 9 |
LUO S Q, CHEN X, ZHOU Z, et al Incentive-aware micro computing cluster formation for cooperative fog computing. IEEE Trans. on Wireless Communications, 2020, 19 (4): 2643- 2657.
doi: 10.1109/TWC.2020.2967371 |
| 10 |
TONG S Y, LIU Y, CHERIET M, et al UCAA: user-centric user association and resource allocation in fog computing networks. IEEE Access, 2020, 8, 10671- 10685.
doi: 10.1109/ACCESS.2020.2965218 |
| 11 |
ZHANG J W, LI T, YING Z B, et al Trust-based secure multi-cloud collaboration framework in cloud-fog-assisted IoT. IEEE Trans. on Cloud Computing, 2023, 11 (2): 1546- 1561.
doi: 10.1109/TCC.2022.3147226 |
| 12 |
ZHANG H Q, XIAO Y, BU S R, et al Computing resource allocation in three-tier IoT fog networks: a joint optimization approach combining stackelberg game and matching. IEEE Internet of Things Journal, 2017, 4 (5): 1204- 1215.
doi: 10.1109/JIOT.2017.2688925 |
| 13 |
LIN C, HAN G J, QI X Y, et al A distributed mobile fog computing scheme for mobile delay-sensitive applications in SDN-enabled vehicular networks. IEEE Trans. on Vehicular Technology, 2020, 69 (5): 5481- 5493.
doi: 10.1109/TVT.2020.2980934 |
| 14 |
ZHAO S, LI F H, LI H W, et al Smart and practical privacy-preserving data aggregation for fog-based smart grids. IEEE Trans. on Information Forensics and Security, 2021, 16, 521- 536.
doi: 10.1109/TIFS.2020.3014487 |
| 15 | HAO Y Y, NI Q, LI H, et al. Energy-efficient multi-user mobile-edge computation offloading in massive MIMO enabled HetNets. Proc. of the IEEE International Conference on Communications, 2019. DOI: 10.1109/IWCMC.2019.8766659. |
| 16 | LI Q P, ZHAO J H, GONG Y. Cooperative computation offloading and resource allocation for mobile edge computing. Proc. of the IEEE International Conference on Communications Workshops, 2019. DOI: 10.1109/ICCW.2019.8756684. |
| 17 |
GU Y A, CHANG Z, PAN M, et al Joint radio and computational resource allocation in IoT fog computing. IEEE Trans. on Vehicular Technology, 2018, 67 (8): 7475- 7484.
doi: 10.1109/TVT.2018.2820838 |
| 18 |
MUKHERJEE M, GUO M, LLORET J, et al Deadline-aware fair scheduling for offloaded tasks in fog computing with inter-fog dependency. IEEE Communications Letters, 2020, 24 (2): 307- 311.
doi: 10.1109/LCOMM.2019.2957741 |
| 19 |
MUKHERJEE M, KUMAR S, MAVROMOUSTAKIS C X, et al Latency-driven parallel task data offloading in fog computing networks for industrial applications. IEEE Trans. on Industrial Informatics, 2020, 16 (9): 6050- 6058.
doi: 10.1109/TII.2019.2957129 |
| 20 |
WANG S D, ZHAO T Y, PANG S C Task scheduling algorithm based on improved firework algorithm in fog computing. IEEE Access, 2020, 8, 32385- 32394.
doi: 10.1109/ACCESS.2020.2973758 |
| 21 |
CHEN S G, ZHENG Y M, LU W F, et al Energy-optimal dynamic computation offloading for industrial IoT in fog computing. IEEE Trans. on Green Communications and Networking, 2020, 4 (2): 566- 576.
doi: 10.1109/TGCN.2019.2960767 |
| 22 |
GAO X, HUANG X, BIAN S M, et al PORA: predictive offloading and resource allocation in dynamic fog computing systems. IEEE Internet of Things Journal, 2020, 7 (1): 72- 87.
doi: 10.1109/JIOT.2019.2945066 |
| 23 |
LIANG J B, ZHANG M, LEUNG V C M A reliable trust computing mechanism based on multisource feedback and fog computing in social sensor cloud. IEEE Internet of Things Journal, 2020, 7 (6): 5481- 5490.
doi: 10.1109/JIOT.2020.2981005 |
| 24 |
WU D, ANSARI N A cooperative computing strategy for blockchain-secured fog computing. IEEE Internet of Things Journal, 2020, 7 (7): 6603- 6609.
doi: 10.1109/JIOT.2020.2974231 |
| 25 | HAMAMREH J M, FURQAN H M, ARSLAN H Classifications and applications of physical layer security techniques for confidentiality: a comprehensive survey. IEEE Communications Surveys & Tutorials, 2019, 21 (2): 1773- 1828. |
| 26 |
NI J B, ZHANG K, YU Y, et al Providing task allocation and secure deduplication for mobile crowdsensing via fog computing. IEEE Trans. on Dependable and Secure Computing, 2020, 17 (3): 581- 594.
doi: 10.1109/TDSC.2018.2791432 |
| 27 |
SENGUPTA J, RUJ S, BIT S D A secure fog-based architecture for industrial Internet of Things and Industry 4.0. IEEE Trans. on Industrial Informatics, 2021, 17 (4): 2316- 2324.
doi: 10.1109/TII.2020.2998105 |
| 28 |
LI Y R, LI H W, XU G W, et al Practical privacy- preserving federated learning in vehicular fog computing. IEEE Trans. on Vehicular Technology, 2022, 71 (5): 4692- 4705.
doi: 10.1109/TVT.2022.3150806 |
| 29 | XU S M, NING J T, LI Y J, et al Match in my way: fine-grained bilateral access control for secure cloud-fog computing. IEEE Trans. on Dependable and Secure Computing, 2022, 19 (2): 1064- 1077. |
| 30 |
JUNEJO A K, KOMNINOS N, MCCANN J A A secure integrated framework for fog-assisted Internet-of-Things systems. IEEE Internet of Things Journal, 2021, 8 (8): 6840- 6852.
doi: 10.1109/JIOT.2020.3035474 |
| 31 |
ZHANG C S, GE J H, GONG F K, et al Improving physical-layer security for wireless communication systems using duality-aware two-way relay cooperation. IEEE Systems Journal, 2019, 13 (2): 1241- 1249.
doi: 10.1109/JSYST.2018.2864778 |
| 32 |
GAO H Y, SU Y M, ZHANG S B, et al Joint antenna selection and power allocation for secure co-time co-frequency full-duplex massive MIMO systems. IEEE Trans. on Vehicular Technology, 2021, 70 (1): 655- 665.
doi: 10.1109/TVT.2020.3048854 |
| 33 |
SI J B, CHENG Z H, LI Z, et al Cooperative jamming for secure transmission with both active and passive eavesdroppers. IEEE Trans. on Communications, 2020, 68 (9): 5764- 5777.
doi: 10.1109/TCOMM.2020.3003946 |
| 34 |
SHEN H, XU W, GONG S L, et al Secrecy rate maximization for intelligent reflecting surface assisted multi-antenna communications. IEEE Communications Letters, 2019, 23 (9): 1488- 1492.
doi: 10.1109/LCOMM.2019.2924214 |
| 35 | KUHESTANI A, MOHAMMADI A, MOHAMMADI M Joint relay selection and power allocation in large-scale MIMO systems with untrusted relays and passive eavesdroppers. IEEE Trans. on Information Forensics and Security, 2018, 13 (2): 341- 355. |
| 36 |
XU J, YAO J P Exploiting physical-layer security for multiuser multicarrier computation offloading. IEEE Wireless Communications Letters, 2019, 8 (1): 9- 12.
doi: 10.1109/LWC.2018.2845882 |
| 37 |
NI L N, ZHANG J Q, JIANG C J, et al Resource allocation strategy in fog computing based on priced timed Petri nets. IEEE Internet of Things Journal, 2017, 4 (5): 1216- 1228.
doi: 10.1109/JIOT.2017.2709814 |
| 38 |
WANG C M, YU F R, LIANG C C, et al Joint computation offloading and interference management in wireless cellular networks with mobile edge computing. IEEE Trans. on Vehicular Technology, 2017, 66 (8): 7432- 7445.
doi: 10.1109/TVT.2017.2672701 |
| 39 |
VU T T, NGUYEN D N, HOANG D T, et al Optimal energy efficiency with delay constraints for multi-layer cooperative fog computing networks. IEEE Trans. on Communications, 2021, 69 (6): 3911- 3929.
doi: 10.1109/TCOMM.2021.3064333 |
| 40 |
CHEN G J, COON J P, DI RENZO M Secrecy outage analysis for downlink transmissions in the presence of randomly located eavesdroppers. IEEE Trans. on Information Forensics and Security, 2017, 12 (5): 1195- 1206.
doi: 10.1109/TIFS.2017.2656462 |
| 41 |
SARDARI F, MOGHADDAM M E An object tracking method using modified galaxy-based search algorithm. Swarm and Evolutionary Computation, 2016, 30, 27- 38.
doi: 10.1016/j.swevo.2016.04.001 |
| 42 |
HAGHDAR K Optimal DC source influence on selective harmonic elimination in multilevel inverters using teaching-learning-based optimization. IEEE Trans. on Industrial Electronics, 2020, 67 (2): 942- 949.
doi: 10.1109/TIE.2019.2901657 |
| 43 |
XU J, GUO C C, ZHANG H Joint channel allocation and power control based on PSO for cellular networks with D2D communications. Computer Networks, 2018, 133, 104- 119.
doi: 10.1016/j.comnet.2018.01.017 |
| No related articles found! |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||