In wideband noncooperative interference cancellation, the reference signals obtained through auxiliary antennas are weighted to cancel with the interference signal. The correlation between the reference signal and the interference signal determines interference cancellation performance, while the auxiliary antenna array affects the correlation by influencing the amplitude and phase of the reference signals. This paper analyzes the effect of auxiliary antenna array on multiple performances of wideband noncooperative interference cancellation. Firstly, the array received signal model of wideband interference is established, and the weight vector coupled with the auxiliary antennas array manifold is solved by spectral analysis and eigen-subspace decomposition. Then, multiple performances which include cancellation resolution, grating null, wideband interference cancellation ratio (ICR), and convergence rate are quantitatively characterized with the auxiliary antenna array. It is obtained through analysis that the performances mutually restrict the auxiliary antenna array. Higher cancellation resolution requires larger array aperture, but when the number of auxiliary antennas is fixed, larger array aperture results in more grating nulls. When the auxiliary antennas are closer to the main antenna, the wideband ICR is improved, but the convergence rate is reduced. The conclusions are verified through simulation of one-dimensional uniform array and two-dimensional nonuniform array. The experiments of three arrays are compared, and the results conform well with simulation and support the theoretical analysis.