Journal of Systems Engineering and Electronics ›› 2024, Vol. 35 ›› Issue (3): 707-719.doi: 10.23919/JSEE.2024.000065
• SYSTEMS ENGINEERING • Previous Articles
Mingyu LI1,2(), Lu GAO1,*(), Hongwei XU1(), Kai LI1(), Yisong HUANG1()
Received:
2022-03-28
Online:
2024-06-18
Published:
2024-06-19
Contact:
Lu GAO
E-mail:1441741393@qq.com;178508362@qq.com;258115205@qq.com;779025078@qq.com;1215459736@qq.com
About author:
Mingyu LI, Lu GAO, Hongwei XU, Kai LI, Yisong HUANG. Equipment damage measurement method of wartime based on FCE-PCA-RF[J]. Journal of Systems Engineering and Electronics, 2024, 35(3): 707-719.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Fuzzy membership degree of 12 influencing factors in equipment damage measurement"
Influencing factor | Comprehensive membership | Evaluation result | ||
High | Middle | Low | ||
Enemy equipment lethality | 0.57 | 0.2 | 0.23 | High |
Application of enemy equipment | 0.28 | 0.265 | 0.455 | Low |
Enemy fire strategy | 0.505 | 0.27 | 0.225 | High |
Combat style | 0.56 | 0.235 | 0.205 | High |
Combat time limit | 0.315 | 0.29 | 0.395 | Low |
Annihilation scale | 0.4 | 0.29 | 0.31 | High |
Equipment composition | 0.59 | 0.2 | 0.21 | High |
Personnel operation quality | 0.33 | 0.2 | 0.47 | Low |
Camouflage and protection | 0.43 | 0.3 | 0.27 | High |
Natural environment | 0.315 | 0.37 | 0.315 | Middle |
Electromagnetic interference | 0.295 | 0.365 | 0.34 | Middle |
Cultural environment | 0.315 | 0.35 | 0.335 | Middle |
Table 2
Factors affecting the measurement of equipment damage during wartime"
Serial number | Y1 | Y2 | Y3 | Y4 | Y5 | Y6 | Y7 |
1 | 64910 | 0.07 | 3.0 | 0.83 | 0.83 | 0.87 | 0.7 |
2 | 82200 | 0.07 | 2.4 | 0.61 | 0.69 | 0.68 | 0.6 |
3 | 92200 | 0.31 | 2.4 | 0.44 | 0.82 | 0.68 | 0.4 |
4 | 12230 | 0.59 | 1.3 | 0.22 | 0.11 | 0.23 | 0.3 |
5 | 22590 | 0.14 | 1.5 | 0.83 | 0.63 | 0.77 | 0.7 |
6 | 15980 | 0.34 | 1.0 | 0.67 | 0.46 | 0.56 | 0.6 |
7 | 18970 | 0.34 | 1.0 | 0.61 | 0.47 | 0.64 | 0.1 |
8 | 14205 | 0.41 | 0.6 | 0.11 | 0.32 | 0.41 | 0.1 |
9 | 16970 | 0.24 | 1.5 | 0.44 | 0.54 | 0.60 | 0.6 |
10 | 17590 | 0.62 | 0.3 | 0.17 | 0.12 | 0.23 | 0.1 |
21 | 27900 | 0.10 | 2.0 | 1.00 | 0.64 | 0.77 | 0.6 |
22 | 20350 | 0.21 | 1.5 | 0.56 | 0.52 | 0.62 | 0.4 |
23 | 32870 | 0.20 | 2.0 | 0.61 | 0.77 | 0.82 | 0.4 |
24 | 14450 | 0.28 | 0.6 | 0.67 | 0.35 | 0.58 | 0.6 |
25 | 45640 | 0.31 | 2.4 | 0.83 | 0.75 | 0.86 | 0.7 |
26 | 22687 | 0.24 | 1.4 | 0.61 | 0.50 | 0.62 | 0.1 |
27 | 21890 | 0.24 | 1.5 | 0.61 | 0.50 | 0.62 | 0.9 |
28 | 21460 | 0.21 | 1.5 | 0.83 | 0.63 | 0.84 | 0.7 |
29 | 25490 | 0.24 | 1.6 | 0.50 | 0.52 | 0.64 | 0.9 |
30 | 23480 | 0.41 | 0.7 | 0.28 | 0.31 | 0.42 | 0.1 |
Table 4
First and second principal component eigenvectors"
Variable | Comp1 | Comp2 |
Enemy combat equipment effectiveness index | 0.2817 | 0.6873 |
Enemy target fire strike effectiveness coefficient | −0.3949 | 0.1596 |
Combat style modifier | 0.4034 | 0.2809 |
Destroy the enemy’s combat power ratio | 0.3839 | −0.3270 |
Participation rate of a certain type of equipment | 0.4299 | 0.1792 |
Camouflage and protection factor | 0.4240 | −0.0889 |
Environmental impact factor | 0.3001 | −0.5256 |
1 | WANG X, SMITH-MILES K, HYNDMAN R Rule induction for forecasting method selection: meta-learning the characteristics of univariate time series. Neurocomputing, 2009, 72 (10/12): 2581- 2594. |
2 | DONG Q, WU D Q, LI Z, et al Analysis on the influence factors of strategic operational equipment maintenance support calculation. Value Engineering, 2015, 34 (34): 62- 64. |
3 | GAO Y G, QI Y G Research on task-oriented equipment damage prediction method. Science and Technology Information, 2012, (10): 130. |
4 | GUO Y M, CHEN C L, CAO Y H, et al Determination of wartime maintenance support equipment quantity based on queuing theory and lanchester equation. Fire Control & Command Control, 2021, 46 (11): 124- 129. |
5 | XUE H, LIU G Y, LIU T L, et al Spare parts support probability distribution and demand forecast model based on combat missions. Journal of Armored Forces Engineering College, 2018, 32 (6): 22- 27. |
6 | KANG J Y, CHEN Z, LIU Y J, et al Demand prediction algorithm for equipment support spare parts. Modern Defense Technology, 2020, 48 (4): 102- 109. |
7 |
WANG Y B Predication and optimization of maintenance resources for weapon system. International Journal of Intelligent Systems and Applications, 2011, 3 (5): 1- 9.
doi: 10.5815/ijisa.2011.05.01 |
8 | RAO D Damage estimation and assessment modelling of ground targets in air-land battle simulations. Journal of Battlefield Technology, 2015, 18 (1): 21- 29. |
9 |
AEBISCHER D, VATTEROTT J, GRIMES M, et al Bayesian networks for combat equipment diagnostics. Interfaces, 2017, 47 (1): 85- 105.
doi: 10.1287/inte.2016.0883 |
10 | SONG X, JIA H L, WANG Q, et al Prediction of maintenance support capability of synthetic brigade equipment based on time series mining. Systems Engineering and Electronics, 2020, 42 (4): 878- 886. |
11 | SONG W X, LEI Z J, LE Q, et al Maintenance personnel optimization model of vehicle equipment based on support task. Mathematical Problems in Engineering, 2021, 2021 (4): 1- 13. |
12 |
SHAN J C, LIU Q B Analysis of the impact of battlefield environment on military operation effectiveness using fuzzy influence diagram. International Journal of Fuzzy Systems, 2019, 21 (6): 1882- 1893.
doi: 10.1007/s40815-019-00662-6 |
13 |
XIA J Y, PI Z Y, FANG W G Predicting war outcomes based on a fuzzy influence diagram. International Journal of Fuzzy Systems, 2021, 23 (4): 984- 1002.
doi: 10.1007/s40815-020-01026-1 |
14 |
KARIM Y, CHERKAOUI A Fuzzy analytical hierarchy process and fuzzy comprehensive evaluation method applied to assess and improve human and organizational factors maturity in mining industry. ASTES Journal, 2021, 6 (2): 75- 84.
doi: 10.25046/aj060210 |
15 | WANG Q A fuzzy comprehensive evaluation method of area resource carrying capacity. International Journal of Circuits, 2021, 14, 1137- 1153. |
16 | DU Y W, FANG J, WANG P, et al Ecological security evaluation of marine ranching based on DEMATEL-Fuzzy comprehensive evaluation. Mathematical Problems in Engineering, 2021, 2021, 6688110. |
17 |
XIAO W, LIANG Y S Fuzzy comprehensive evaluation of oil field waterflooding effect. International Journal of Geosciences, 2021, 12 (6): 560- 571.
doi: 10.4236/ijg.2021.126031 |
18 |
JIA H T, ZHU L, DU J Fuzzy comprehensive evaluation model of the farmers’ sense of gain in the provision of rural infrastructures: the case of tourism-oriented rural areas of China. Sustainability, 2022, 14 (10): 5831- 5848.
doi: 10.3390/su14105831 |
19 |
SUN X L, TENG G, GUO X L, et al Risk assessment of water inrush in karst tunnels based on fuzzy comprehensive evaluation considering misjudgment losses: a case study. Arabian Journal of Geosciences, 2022, 15, 421.
doi: 10.1007/s12517-022-09633-y |
20 | WU M F, CHEN W. Forecast of electric vehicle sales in the world and China based on PCA-GRNN. Sustainability, 2022, 14(4): 2206−2220. |
21 |
SIDOU L F, BORGES E M Teaching principal component analysis using a free and open source software program and exercises applying PCA to real-world examples. Journal of Chemical Education, 2020, 97 (6): 1666- 1676.
doi: 10.1021/acs.jchemed.9b00924 |
22 | ORCHE A E, BOUATIA M, YANISSE S, et al Evaluation of the capability of horizontal ATR-FTMIR and UV-visible spectroscopy in the discrimination of virgin olive oils from the moroccan region of Beni Mellal-Khenifra. Journal of Spectroscopy, 2020, 2020, 9317350. |
23 | PAN X, GUO G H A new method for rolling bearing compound fault diagnosis based on WT-PCA method. Vibroengineering PROCEDIA, 2021, 36 (2): 13- 18. |
24 | WANG S C, XUE Y, JIA W W A new population initialization of particle swarm optimization method based on PCA for feature selection. School of Computer and Software, 2021, 3 (1): 1- 9. |
25 |
WAGALE M, SINGH A P, SARKAR A K Socio-economic impacts of low-volume roads using a mixed-method approach of PCA and fuzzy-TOPSIS. International Review for Spatial Planning and Sustainable Development, 2021, 9 (2): 112- 133.
doi: 10.14246/irspsda.9.2_112 |
26 |
HIRATA M, ASAHI T, SHIRAISHI T, et al Scheduling parameter reduction of diesel engine air path LPV model by PCA and autoencoder-based method. IFAC-PapersOnLine, 2020, 53 (2): 13994- 13999.
doi: 10.1016/j.ifacol.2020.12.919 |
27 | LI S, WEN J A model-based fault detection and diagnostic methodology based on PCA method and wavelet transform. Energy & Buildings, 2014, 68, 63- 71. |
28 | JARBOUI R, SELLAMI F, AZRI C, et al Olive mill wastewater evaporation management using PCA method. Journal of Hazardous Materials, 2009, 176 (1): 992- 1005. |
29 |
SUN X, MARQUEZ J H, CHEN T W, et al An improved PCA method with application to boiler leak detection. ISA Transactions, 2005, 44 (3): 379- 397.
doi: 10.1016/S0019-0578(07)60211-0 |
30 | NISHIMURA K, ABE K, ISHIKAWA S, et al A PCA based method of gene expression visual analysis. Genome Informatics, 2003, 14, 346- 347. |
31 |
Al-BAKRI A Y, SAZID M Application of artificial neural network (ANN) for prediction and optimization of blast-induced impacts. Mining, 2021, 1 (3): 315- 334.
doi: 10.3390/mining1030020 |
32 |
SHAO Y X, WANG Z J, CAO N N, et al Prediction of 3-month treatment outcome of IgG4-DS based on BP artificial neural network. Oral Diseases, 2021, 27 (4): 934- 941.
doi: 10.1111/odi.13601 |
33 |
EFFENDY N, AZIZ S, KAMARI H M, et al Artificial neural network prediction on ultrasonic performance of bismuth-tellurite glass compositions. Journal of Materials Research and Technology, 2020, 9 (6): 14082- 14092.
doi: 10.1016/j.jmrt.2020.09.107 |
34 | WANG Y, LING C J, YIN H Q, et al Thermophysical properties of KCl-NaF reciprocal eutectic by artificial neural network prediction and experimental measurements. Solar Energy, 2020, 204, 667- 672. |
35 |
JING X, LUO J G, WANG J M, et al A multi-imputation method to deal with hydro-meteorological missing values by integrating chain equations and random forest. Water Resources Management, 2022, 36 (4): 1159- 1173.
doi: 10.1007/s11269-021-03037-5 |
36 |
TIE J J, LEI X, PAN Y Metabolite-disease association prediction algorithm combining deepWalk and random forest. Tsinghua Science and Technology, 2022, 27 (1): 58- 67.
doi: 10.26599/TST.2021.9010003 |
37 | DEB S, GAO X Z, CHEN M E Prediction of charging demand of electric city buses of helsinki. Finland by Random Forest, 2022, 15 (10): 3679- 3696. |
38 |
LU S F, SHI X, LI M, et al Semi-supervised random forest regression model based on co-training and grouping with information entropy for evaluation of depression symptoms severity. Mathematical Biosciences and Engineering, 2021, 18 (4): 4586- 4602.
doi: 10.3934/mbe.2021233 |
39 |
AZHAR Y, MAHESA G A, MUSTAQIM M C Prediction of hotel bookings cancellation using hyperparameter optimization on random forest algorithm. Jurnal Teknologi dan Sistem Komputer, 2021, 9 (1): 15- 21.
doi: 10.14710/jtsiskom.2020.13790 |
40 |
XU A K, LI R, CHANG H M Artificial neural network modeling for the prediction of odor emission rates from landfill working surface. Waste Management, 2022, 138, 158- 171.
doi: 10.1016/j.wasman.2021.11.045 |
41 | GAO Y P, HONG Y, CUI X Z Prediction model and realization for water quality in an intensive aquaculture based on L-M BP neural network. Journal of Dalian Fisheries University, 2008, 23 (3): 221- 224. |
42 | YANG S X, YANG G Y Emotion recognition of EMG based on improved L-M BP neural network and SVM. Journal of Software, 2011, 6 (8): 1529- 1536. |
43 | NOORIZADEH H, FARMANY A, NOORIZADEH M pKa modelling and prediction of drug molecules through GA-KPLS and L-M ANN. Drug Testing & Analysis, 2013, 5 (2): 103- 109. |
[1] | Kai ZHOU, Daojing LI, Anjing CUI, Dong HAN, He TIAN, Haifeng YU, Jianbo DU, Lei LIU, Yu ZHU, Running ZHANG. Sparse flight spotlight mode 3-D imaging of spaceborne SAR based on sparse spectrum and principal component analysis [J]. Journal of Systems Engineering and Electronics, 2021, 32(5): 1143-1151. |
[2] | Jing FANG, Shaohai HU, Xiaole MA. SAR image de-noising via grouping-based PCA and guided filter [J]. Journal of Systems Engineering and Electronics, 2021, 32(1): 81-91. |
[3] | Qiang QIN, Yunwen FENG, Feng LI. Structural reliability analysis using enhanced cuckoo search algorithm and artificial neural network [J]. Journal of Systems Engineering and Electronics, 2018, 29(6): 1317-1326. |
[4] | Jianfei Ding, Guangya Si, Baoqiang Li, Jingyu Yang, and Yu Zhang. Construction of composite indicator system based on simulation data mining [J]. Systems Engineering and Electronics, 2017, 28(1): 81-. |
[5] | Ke Zhang, Yintao Zhang, and Pinpin Qu. Comprehensive multivariate grey incidence degree based on principal component analysis [J]. Journal of Systems Engineering and Electronics, 2014, 25(5): 840-847. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||