Journal of Systems Engineering and Electronics ›› 2025, Vol. 36 ›› Issue (3): 634-641.doi: 10.23919/JSEE.2024.000128
• ELECTRONICS TECHNOLOGY • Previous Articles
Shifei TAO1,*(), Beichen LIU1(
), Sixing LIU1(
), Fan WU2(
), Hao WANG1(
)
Received:
2023-01-18
Accepted:
2023-09-03
Online:
2025-06-18
Published:
2025-07-10
Contact:
Shifei TAO
E-mail:s.tao@njust.edu.cn;516109908@qq.com;sixingliu@njust.edu.cn;wufan@njust.edu.cn;haowang@mail.njust.edu.cn
About author:
Supported by:
Shifei TAO, Beichen LIU, Sixing LIU, Fan WU, Hao WANG. Topological optimization of metamaterial absorber based on improved estimation of distribution algorithm[J]. Journal of Systems Engineering and Electronics, 2025, 36(3): 634-641.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | CUI T J, SMITH D R, LIU R P. Metamaterials: theory, design, and applications. New York: Springer, 2009. |
2 | LIU S X, PEI C B, YE X D, et al Efficient sampling strategy driven surrogate-based multi-objective optimization for broadband microwave metamaterial absorbers. Journal of Systems Engineering and Electronics, 2024, 35 (6): 1388- 1396. |
3 |
LI W W, XU M Z, XU H X, et al Metamaterial absorbers: from tunable surface to structural transformation. Advanced Materials, 2022, 34 (38): 2202509.
doi: 10.1002/adma.202202509 |
4 |
WANG Y Z, XU H X, WANG C H, et al Research progress of electromagnetic metamaterial absorbers. Acta Physica Sinica, 2020, 69 (13): 134101.
doi: 10.7498/aps.69.20200355 |
5 | WU P T, YU H, HU Y N, et al Approximate CN scheme and its open region problems for metamaterial rotational symmetric simulation. Journal of Systems Engineering and Electronics, 2022, 33 (6): 1081- 1087. |
6 |
CHEN Y F, WANG L W Higher order implicit CNDG-PML algorithm for left-handed materials. Journal of Systems Engineering and Electronics, 2021, 32 (1): 31- 37.
doi: 10.23919/JSEE.2021.000004 |
7 |
TAO J Q, XU L L, PEI C B, et al Catfish effect induced by anion sequential doping for microwave absorption. Advanced Functional Materials, 2023, 33 (8): 2211996.
doi: 10.1002/adfm.202211996 |
8 |
WU L P, GAO H, GUO R H, et al MnO2 intercalation-guided impedance tuning of Carbon/Polypyrrole double conductive layers for electromagnetic wave absorption. Chemical Engineering Journal, 2023, 460, 141749.
doi: 10.1016/j.cej.2023.141749 |
9 |
ZHANG C, YIN S, LONG C, et al Hybrid metamaterial absorber for ultra-low and dual-broadband absorption. Optics Express, 2021, 29 (9): 14078- 14086.
doi: 10.1364/OE.423245 |
10 |
BAGMANCI M, AKGOL O, OZAKTURK M, et al Polarization independent broadband metamaterial absorber for microwave applications. International Journal of RF and Microwave Computer-Aided Engineering, 2019, 29 (1): e21630.
doi: 10.1002/mmce.21630 |
11 | ZHAN T, ZHOU C, TAO S F, et al. Shape optimization design of multi-beam reflector antenna based on multi-objective particle swarm optimization. Proc. of the International Applied Computational Electromagnetics Society Symposium, 2018. DOI: 10.23919/ACESS.2018.8669301. |
12 |
KAUR K P, UPADHYAYA T, PALANDOKEN M, et al Ultrathin dual-layer triple-band flexible microwave metamaterial absorber for energy harvesting applications. International Journal of RF and Microwave Computer-Aided Engineering, 2019, 29 (1): e21646.
doi: 10.1002/mmce.21646 |
13 | YAO X, HUANG Y Q, LI G Y, et al Design of an ultra-broadband microwave metamaterial absorber based on multilayer structures. International Journal of RF and Microwave Computer-Aided Engineering, 2022, 32 (8): e23222. |
14 | ZHANG L, LIU S, CUI T J Theory and application of coding metamaterials. Chinese Optics, 2017, 10 (1): 1- 12. |
15 | CUI T J, QI M Q, WAN X, et al Coding metamaterials, digital metamaterials and programmable metamaterials. Light: Science & Applications, 2014, 3 (10): e218. |
16 |
TRAN M C, PHAM V H, HO T H, et al Broadband microwave coding metamaterial absorbers. Scientific Reports, 2020, 10 (1): 1810.
doi: 10.1038/s41598-020-58774-1 |
17 |
SUI S, MA H, WANG J F, et al Topology optimization design of a lightweight ultra-broadband wide-angle resistance frequency selective surface absorber. Journal of Physics D:Applied Physics, 2015, 48 (21): 215101.
doi: 10.1088/0022-3727/48/21/215101 |
18 | LIU S X, PEI C B, YE X D, et al. An efficient sampling strategy driven surrogate-based multi-objective optimization for broadband microwave metamaterial absorbers. Journal of Systems Engineering and Electronics, 2024, 35(6): 1388−1396. |
19 |
XIONG Y, CHEN F, CHENG Y Z, et al Ultra-thin optically transparent broadband microwave metamaterial absorber based on indium tin oxide. Optical Materials, 2022, 132, 112745.
doi: 10.1016/j.optmat.2022.112745 |
20 |
YUAN Q, MA H, SUI S, et al A broadband wide-angle synthetical absorber designed by topology optimization of resistance surface and metal wires. IEEE Access, 2019, 7, 142675- 142681.
doi: 10.1109/ACCESS.2019.2942495 |
21 | ZHU R, WANG J, SUI S, et al. Coding metasurface design via intelligence algorithm. Proc. of the Photonics & Electromagnetics Research Symposium, 2022: 333−336. |
22 |
MO M M, MA W W, PANG Y Q, et al Broadband absorbent materials based on topology optimization design. Acta Physica Sinica, 2018, 67 (21): 217801.
doi: 10.7498/aps.67.20181170 |
23 | ZHANG J, WANG G, WANG T, et al Genetic algorithms to automate the design of metasurfaces for absorption bandwidth broadening. ACS Applied Materials & Interfaces, 2021, 13 (6): 7792- 7800. |
24 |
LI Z, STAN L, CZAPLEWSKI D A, et al Broadband infrared binary-pattern metasurface absorbers with micro-genetic algorithm optimization. Optics Letters, 2019, 44 (1): 114- 117.
doi: 10.1364/OL.44.000114 |
25 | SUI S, MA H, CHANG H W, et al Optimization design of metamaterial absorbers based on an improved adaptive genetic algorithm. Applied Computational Electromagnetics Society Journal, 2019, 34 (8): 1198- 1203. |
26 | MUHLENBEIN H, PAAß G. From recombination of genes to the estimation of distributions I. Binary parameters. Berlin: Springer, 2005. |
27 | LARRANGA P, LOZANO J A. Estimation of distribution algorithms: a new tool for evolutionary computation. New York: Springer, 2001. |
28 |
ZHOU A, SUN J, ZHANG Q An estimation of distribution algorithm with cheap and expensive local search methods. IEEE Trans. on Evolutionary Computation, 2015, 19 (6): 807- 822.
doi: 10.1109/TEVC.2014.2387433 |
29 |
TANG L X, SONG X M, LIU J Y, et al An estimation of distribution algorithm with filtering and learning. IEEE Trans. on Automation Science and Engineering, 2021, 18 (3): 1478- 1491.
doi: 10.1109/TASE.2020.3019694 |
30 |
PENG X G, GAO X G, YANG S X Environment identification-based memory scheme for estimation of distribution algorithms in dynamic environments. Soft Computing, 2011, 15 (2): 311- 326.
doi: 10.1007/s00500-010-0547-5 |
31 |
SONG Z C, MIN P P, YANG L, et al A bilateral coding metabsorber using characteristic mode analysis. IEEE Antennas and Wireless Propagation Letters, 2022, 21, 1228- 1232.
doi: 10.1109/LAWP.2022.3162330 |
[1] | Sixing LIU, Changbao PEI, Xiaodong YE, Hao WANG, Fan WU, Shifei TAO. Efficient sampling strategy driven surrogate-based multi-objective optimization for broadband microwave metamaterial absorbers [J]. Journal of Systems Engineering and Electronics, 2024, 35(6): 1388-1396. |
[2] | Peiyu WU, Han YU, Yenan HU, Yongjun XIE, Haolin JIANG. Approximate CN scheme and its open region problems for metamaterial rotational symmetric simulation [J]. Journal of Systems Engineering and Electronics, 2022, 33(6): 1081-1087. |
[3] | Yindong SHEN, Liwen PENG, Jingpeng LI. An improved estimation of distribution algorithm for multi-compartment electric vehicle routing problem [J]. Journal of Systems Engineering and Electronics, 2021, 32(2): 365-379. |
[4] | Haidong Xu, Mingyan Jiang, and Kun Xu. Archimedean copula estimation of distribution algorithm based on artificial bee colony algorithm [J]. Journal of Systems Engineering and Electronics, 2015, 26(2): 388-396. |
[5] | Maoyan Wang, Chengwei Qiu, Jun Xu, Yuliang Dong, Hu Zheng, and Hailong Li. Mie series for electromagnetic scattering of chiral metamaterials sphere [J]. Journal of Systems Engineering and Electronics, 2011, 22(6): 885-891. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||