
Journal of Systems Engineering and Electronics ›› 2025, Vol. 36 ›› Issue (5): 1122-1131.doi: 10.23919/JSEE.2025.000052
• ELECTRONICS TECHNOLOGY • Previous Articles
					
													Yijia DONG( ), Yuanyuan XU(
), Yuanyuan XU( ), Shuai LIU(
), Shuai LIU( ), Ming JIN(
), Ming JIN( )
)
												  
						
						
						
					
				
Received:2023-11-20
															
							
															
							
																	Accepted:2025-06-24
															
							
																	Online:2025-10-18
															
							
																	Published:2025-10-24
															
						Contact:
								Shuai LIU   
																	E-mail:yijiadong99@163.com;xuyuanyuan626@163.com;liu-shuai@hit.edu.cn;jinming0987@163.com
																					About author:Supported by:Yijia DONG, Yuanyuan XU, Shuai LIU, Ming JIN. DOA estimation based on sparse Bayesian learning under amplitude-phase error and position error[J]. Journal of Systems Engineering and Electronics, 2025, 36(5): 1122-1131.
 
													
													Table 1
Definition of related symbols"
| Symbol | Definition | 
| The covariance matrix of the tth snapshot data of the received data | |
| The covariance precision parameters | |
| The noise covariance accuracy | |
| The array element position error vector | |
| The amplitude-phase error covariance accuracy | |
| The array element position error covariance accuracy | |
| The hyperparameters of the Gamma distribution | 
| 1 | SHAMAEI K, KASSAS Z M A joint TOA and DOA acquisition and tracking approach for positioning with LTE signals. IEEE Trans. on Signal Processing, 2021, 69, 2689- 2705. doi: 10.1109/TSP.2021.3068920 | 
| 2 | LI X R, LU H Q, ZENG Y, et al Near-field modeling and performance analysis of modular extremely large-scale array communications. IEEE Communications Letters, 2022, 26 (7): 1529- 1533. doi: 10.1109/LCOMM.2022.3172437 | 
| 3 | XU Y, ZHENG R H, ZHANG S L, et al Robust inertial-aided underwater localization based on imaging sonar keyframes. IEEE Trans. on Instrumentation and Measurement, 2022, 71, 7501812. | 
| 4 | SCHMIDT R Multiple emitter location and signal parameter estimation. IEEE Trans. on Antennas and Propagation, 1986, 34 (3): 276- 280. doi: 10.1109/TAP.1986.1143830 | 
| 5 | ASGHARI M, ZAREINEJAD M, REZAEI S M, et al DOA estimation of noncircular signals under impulsive noise using a novel empirical characteristic function-based MUSIC. Circuits Systrms Signal Processing, 2023, 42 (6): 3706- 3743. doi: 10.1007/s00034-022-02289-9 | 
| 6 | STOICA P, NEHORAI A MUSIC, maximum likelihood, and Cramer-Rao bound. IEEE Trans. on Acoustics, Speech, and Signal Processing, 1989, 37 (5): 720- 741. doi: 10.1109/29.17564 | 
| 7 | PAL P, VAIDYANATHAN P P. Coprime sampling and the MUSIC algorithm. Proc. of the Digital Signal Processing and Signal Processing Education Meeting, 2011: 289−294. | 
| 8 | CANDES E J, WAKIN M B An introduction to compressive sampling. IEEE Signal Processing Magazine, 2008, 25 (2): 21- 30. doi: 10.1109/MSP.2007.914731 | 
| 9 | DAS A Real-valued sparse Bayesian learning for off-grid direction-of-arrival (DOA) estimation in ocean acoustics. IEEE Journal of Oceanic Engineering, 2021, 46 (1): 172- 182. doi: 10.1109/JOE.2020.2981102 | 
| 10 | XU G, ZHANG B J, YU H W, et al Sparse synthetic aperture radar imaging from compressed sensing and machine learning: theories, applications, and trends. IEEE Geoscience and Remote Sensing Magazine, 2022, 10 (4): 32- 69. doi: 10.1109/MGRS.2022.3218801 | 
| 11 | CANDES E J, ROMBERG J, TAO T Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. on Information Theory, 2006, 52 (2): 489- 509. doi: 10.1109/TIT.2005.862083 | 
| 12 | FIGUEIREDO M A T, NOWAK R D, WRIGHT S J Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE Journal of Selected Topics in Signal Processing, 2007, 1 (4): 586- 597. doi: 10.1109/JSTSP.2007.910281 | 
| 13 | DAUBECHIES I, DEFRISE M, DE M C An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Communications on Pure and Applied Mathematics, 2004, 57 (11): 1413- 1457. doi: 10.1002/cpa.20042 | 
| 14 | DONOHO D L, TSAIG Y, DRORI I, et al Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit. IEEE Trans. on Information Theory, 2012, 58 (2): 1094- 1121. doi: 10.1109/TIT.2011.2173241 | 
| 15 | BLUMENSAT T H , DAVIES M E . Stagewise weak gradient pursuits. IEEE Trans. on Signal Processing, 2009, 57(11): 4333−4346. | 
| 16 | NEEDELL D, VERSHYNIN R Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit. Foundations of Computational Mathematics, 2009, 9 (3): 317- 334. doi: 10.1007/s10208-008-9031-3 | 
| 17 | NEEDELL D, TROPP J A CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Applied and Computational Harmonic Analysis, 2009, 26 (3): 301- 321. doi: 10.1016/j.acha.2008.07.002 | 
| 18 | DAI W, MILENKOVIC O Subspace pursuit for compressive sensing signal reconstruction. IEEE Trans. on Information Theory, 2009, 55 (5): 2230- 2249. doi: 10.1109/TIT.2009.2016006 | 
| 19 | TIPPING M E Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research, 2001, 1 (3): 211- 244. | 
| 20 | DONG J Y, LYU W T, ZHOU D, et al Variational Bayesian and generalized approximate message passing-based sparse Bayesian learning model for image reconstruction. IEEE Signal Processing Letters, 2022, 29, 2328- 2332. doi: 10.1109/LSP.2022.3221344 | 
| 21 | BABACAN S D, MOLINA R, KATSAGGELOS A K Bayesian compressive sensing using Laplace priors. IEEE Trans. on Image Processing, 2010, 19 (1): 53- 63. doi: 10.1109/TIP.2009.2032894 | 
| 22 | FU H S, DAI F Z, HONG L Off-grid error calibration for DOA estimation based on sparse Bayesian learning. IEEE Trans. on Vehicular Technology, 2023, 72 (12): 16293- 16307. doi: 10.1109/TVT.2023.3298965 | 
| 23 | WEISS A J, FRIEDLANDER B Mutual coupling effects on phase-only direction finding. IEEE Trans. on Antennas and Propagation, 1992, 40 (5): 535- 541. doi: 10.1109/8.142628 | 
| 24 | FRIEDLANDER B, WEISS A J. Eigenstructure methods for direction finding with sensor gain and phase uncertainties. Proc. of the International Conference on Acoustics, Speech, and Signal Processing, 1988: 2681−2684. | 
| 25 | LI Y, ER M H Theoretical analyses of gain and phase error calibration with optimal implementation for linear equispaced array. IEEE Trans. on Signal Processing, 2006, 54 (2): 712- 723. doi: 10.1109/TSP.2005.861892 | 
| 26 | DAI Z, SU W M, GU H Central direction-of-arrival estimation of coherently distributed sources for antenna arrays with gain-phase errors. IEEE Sensors Letters, 2022, 6 (6): 7001804. | 
| 27 | CHEN Y M, LEE J H, YEH C C, et al Bearing estimation without calibration for randomly perturbed arrays. IEEE Trans. on Signal Processing, 1991, 39 (1): 194- 197. doi: 10.1109/78.80780 | 
| 28 | LIAO B, CHAN S C Direction finding with partly calibrated uniform linear arrays. IEEE Trans. on Antennas and Propagation, 2012, 60 (2): 922- 929. doi: 10.1109/TAP.2011.2173144 | 
| 29 | LIU Z M, ZHOU Y Y A unified framework and sparse Bayesian perspective for direction-of-arrival estimation in the presence of array imperfections. IEEE Trans. on Signal Processing, 2013, 61 (15): 3786- 3798. doi: 10.1109/TSP.2013.2262682 | 
| 30 | SHI J P, HU G P, ZHANG X F, et al Sparsity-based two-dimensional DOA estimation for coprime array: from sum–difference coarray viewpoint. IEEE Trans. on Signal Processing, 2017, 65 (21): 5591- 5604. doi: 10.1109/TSP.2017.2739105 | 
| 31 | LIU Y, ZHANG Z Y, ZHOU C W, et al Robust variational Bayesian inference for direction-of-arrival estimation with sparse array. IEEE Trans. on Vehicular Technology, 2022, 71 (8): 8591- 8602. doi: 10.1109/TVT.2022.3173418 | 
| 32 | CHEN Z M, MA W X, CHEN P, et al A robust sparse Bayesian learning-based DOA estimation method with phase calibration. IEEE Access, 2020, 8, 141511- 141522. doi: 10.1109/ACCESS.2020.3013610 | 
| 33 | DAS A, HODGKISS W S, GERSTOFT P Coherent multipath direction-of-arrival resolution using compressed sensing. IEEE Journal of Oceanic Engineering, 2017, 42 (2): 494- 505. doi: 10.1109/JOE.2016.2576198 | 
| 34 | XU F J, LIU A F, SHI S, et al DOA estimation using sparse representation of beamspace and element-space covariance differencing. Circuits, Systems, and Signal Processing, 2022, 41, 1596- 1608. doi: 10.1007/s00034-021-01846-y | 
| [1] | Jinfang WEN, Jianxin YI, Xianrong WAN, Ziping GONG, Ji SHEN. DOA estimation based on multi-frequency joint sparse Bayesian learning for passive radar [J]. Journal of Systems Engineering and Electronics, 2022, 33(5): 1052-1063. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||