| 1 |
YU W, ZHANG L Optical micro/nanofiber enabled wearable accelerometer. Applied Optics, 2024, 63 (19): F89- F94.
|
| 2 |
JIN Y M, MA Z P, YE Z Y, et al. A self-centering and stiffness-controlled MEMS accelerometer. Microsystems & Nanoengineering, 2024, 10: 11.
|
| 3 |
KRAUSE A G, WINGER M, BLASIUS T D, et al A high-resolution microchip optomechanical accelerometer. Nature Photonics, 2012, 6 (11): 768- 772.
doi: 10.1038/nphoton.2012.245
|
| 4 |
TAGHAVI M, ABEDI A, PARSANASAB G M, et al, Closed-loop MOEMS accelerometer. Optics Express, 2022, 30(12): 20159−20174.
|
| 5 |
LIANGRID L S, JANDERSON, R R, ANGELO P, et al. MEMS capacitive accelerometer: dynamic sensitivity analysis based on analytical squeeze film damping and mechanical thermoelasticity approaches. Discover Applied Sciences, 2019. DOI: 10.1007/s42452–019-0327-5.
|
| 6 |
LIU W, ZHAO T L, HE Z Y, et al. The high-efficiency design method for capacitive MEMS accelerometer. Micromachines, 2023, 14(10). DOI: 10.3390/mi14101891.
|
| 7 |
LEE I, YOON G H, PARK J, et al Development and analysis of the vertical capacitive accelerometer. Sensors and Actuators A: Physical, 2005, 119 (1): 8- 18.
doi: 10.1016/j.sna.2004.06.033
|
| 8 |
LI H Z, WU F, ZHAO M, et al. A novel MASH 2-1 sigma-delta A/D converter with high-to-low conversion for closed-loop MEMS accelerometer interface. Proc. of the IEEE International Nanoelectronics Conference, 2016. DOI: 10.1109/INEC.2016.7589323.
|
| 9 |
LIN J, PHAM L, TAO R, et al A low-power, wide-bandwidth, three-axis mems accelerometer asic using beyond-resonant-frequency sensing. IEEE Journal of Solid-State Circuits, 2024, 59 (3): 774- 783.
doi: 10.1109/JSSC.2023.3344114
|
| 10 |
ONO K, MAEDA D, OSHIMA T, et al. A low 1/f-noise accelerometer frontend using chopper stabilization at a frequency matched with a notch of quantization noise. Proc. of the IEEE Sensors, 2016. DOI: 10.1109/ICSENS.2016.7808794.
|
| 11 |
ROMANSSINI M, COMPASSI-SEVERO L, AGUIRRE P C C, et al. Design of a low-noise signal conditioning circuit for analog MEMS accelerometers. Proc. of the 7th International Symposium on Instrumentation Systems, Circuits and Transducers, 2023. DOI: 10.1109/INSCIT59673.2023.10258504.
|
| 12 |
SELVAKUMAR A, YAZDI N, NAJAFI K A wide-range micromachined threshold accelerometer array and interface circuit. Journal of Micromechanics and Microengineering, 2001, 11 (2): 118- 125.
doi: 10.1088/0960-1317/11/2/306
|
| 13 |
YIN L, LIU X W, CHEN W P, et al. High resolution interface circuit for closed-loop accelerometer. Journal of Semiconductors, 2011, 32(4): 116−123.
|
| 14 |
PAEMEL M V Interface circuit for capacitive accelerometer. Sensors and Actuators, 1989, 17 (3/4): 629- 637.
doi: 10.1016/0250-6874(89)80055-1
|
| 15 |
STEFANI A, ANDRESEN S, YUAN W, et al High sensitivity polymer optical fiber-bragg-grating-based accelerometer. IEEE Photonics Technology Letters, 2012, 24 (9): 763- 765.
doi: 10.1109/LPT.2012.2188024
|
| 16 |
WANG J J, WEI L, LI R Y, et al An FBG-based 2-D vibration sensor with adjustable sensitivity. IEEE Sensors Journal, 2017, 17 (15): 4716- 4724.
doi: 10.1109/JSEN.2017.2715066
|
| 17 |
BASUMALLICK N, BHATTACHARYA S, DEY T K, et al Wideband fiber bragg grating accelerometer suitable for health monitoring of electrical machines. IEEE Sensors Journal, 2020, 20 (24): 14865- 14872.
doi: 10.1109/JSEN.2020.3011414
|
| 18 |
HOU C L, WU Y H, ZENG X, et al Novel high sensitivity accelerometer based on a microfiber loop resonator. Optical Engineering, 2010, 49 (1): 014402.
doi: 10.1117/1.3294883
|
| 19 |
LIU W L, ROMERIA B, LI M, et al A wavelength tunable optical buffer based on self-pulsation in an active microring resonator. Journal of Lightwave Technology, 2016, 34 (14): 3466- 3472.
doi: 10.1109/JLT.2016.2567456
|
| 20 |
BALAKIREVA I V, BLINOV I Y, KHARIREV N P. Optical WGM resonator sensor of earth gravity acceleration inhomogeneities. Proc. of the Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium, 2021. DOI: 0.1109/EFTF/IFCS52194.2021.9604305.
|
| 21 |
HALL N A, OKANDAN M, LITTRELL R, et al. Micromachined accelerometers with optical interferometric read-out and integrated electrostatic actuation. Journal of Microelectromechanical Systems, 2008, 17(1): 37–44.
|
| 22 |
LOH N C, SCHMIDT M A, MANALIS S R. Sub-10 cm3 interferometry accelerometer with Nano-g resolution. Journal of Microelectromechnical Systems, 2002, 11(3): 182−187.
|
| 23 |
WILLIAMS R P, HORD S, HALL N A. Optically read displacement detection using phase-modulated diffraction gratings with reduced zeroth-order reflections. Applied Physics Letters, 2017, 110(15): 151104.
|
| 24 |
SHI Y, XU Z L, WU J H. Ultra-low frequency high-precision displacement measurement based on dual-polarization differential fiber heterodyne interferometer. Journal of Lightwave Technology, 2023, 41(17): 5773−5779.
|
| 25 |
TAGHAVI M, ABEDI A, PARSANASAB G M, et al Closed-loop MOEMS accelerometer. Optics Express, 2022, 30 (12): 20159- 20174.
doi: 10.1364/OE.455772
|
| 26 |
CHEN Z J, KUANG T F, HAN X. Differential displacement measurement of the levitated particle using D-shaped mirrors in the optical tweezers. Optics Express, 2022, 30(17): 30791−30798.
|
| 27 |
HALL N A, OKANDAN M, LITTRELL R, et al Simulation of thin-film damping and thermal mechanical noise spectra for advanced micromachined microphone structures. Journal of Microelectromechanical Systems, 2008, 17 (3): 688- 697.
doi: 10.1109/JMEMS.2008.918384
|
| 28 |
LU Q B, WANG C, BAI J, et al Minimizing cross axis sensitivity in grating-based optomechanical accelerometers. Optics Express, 2016, 24 (8): 9094- 9111.
doi: 10.1364/OE.24.009094
|
| 29 |
BICEN B, JOLLY S, JEELANI K, et al Integrated optical displacement detection and electrostatic actuation for directional optical microphones with micromachined biomimetic diaphragms. Sensors Journal, 2009, 9 (12): 1933- 1941.
doi: 10.1109/JSEN.2009.2031810
|
| 30 |
ZHANG Y, MA H H. Optical micro mechanical accelerometer with double grating: design and simulation. Applied Optics, 2023, 62(22): 6016−6024.
|