
Journal of Systems Engineering and Electronics ›› 2025, Vol. 36 ›› Issue (5): 1342-1352.doi: 10.23919/JSEE.2025.000087
• CONTROL THEORY AND APPLICATION • Previous Articles
Zhenlin ZHOU1,2(
), Teng LONG1,2,3,*(
), Jingliang SUN1,2,3(
), Junzhi LI1,2(
)
Received:2024-05-06
Online:2025-10-18
Published:2025-10-24
Contact:
Teng LONG
E-mail:bit_zzl@sina.com;tenglong@bit.edu.cn;sunjingliangac@163.com;junzhi_lee@163.com
About author:Supported by:Zhenlin ZHOU, Teng LONG, Jingliang SUN, Junzhi LI. Hierarchical cooperative path planning method using three-dimensional velocity-obstacle strategy for multiple fixed-wing UAVs[J]. Journal of Systems Engineering and Electronics, 2025, 36(5): 1342-1352.
Table 2
Value of parameters in the hedge scenario m"
| Number | Start point | Terminal point | Number | Start point | Terminal point | Number | Start point | Terminal point | ||
| 1 | (800,0,50) | (−800,0,−50) | 18 | (−429,675,41) | (429,−675,−41) | 35 | (−341,−724,67) | (341,724,−67) | ||
| 2 | (794,100,49) | (−794,−100,−49) | 19 | (−510,616,59) | (510,−616,−59) | 36 | (−247,−761,32) | (247,761,−32) | ||
| 3 | (775,199,51) | (−775,−199,−51) | 20 | (−583,548,40) | (583,−548,−40) | 37 | (−150,−786,68) | (150,786,−68) | ||
| 4 | (744,295,48) | (−744,−295,−48) | 21 | (−647,470,60) | (647,−470,−60) | 38 | (−50,−798,31) | (50,798,−31) | ||
| 5 | (701,385,52) | (−701,−385,−52) | 22 | (−701,385,39) | (701,−385,−39) | 39 | (50,−798,69) | (−50,798,−69) | ||
| 6 | (647,470,47) | (−647,−470,−47) | 23 | (−744,295,61) | (744,−295,−61) | 40 | (150,−786,30) | (−150,786,−30) | ||
| 7 | (583,548,53) | (−583,−548,−53) | 24 | (−775,199,38) | (775,−199,−38) | 41 | (247,−761,70) | (−247,761,−70) | ||
| 8 | (510,616,46) | (−510,−616,−46) | 25 | (−794,100,62) | (794,−100,−62) | 42 | (341,−724,29) | (−341,724,−29) | ||
| 9 | (429,675,54) | (−429,−675,−54) | 26 | (−800,0,37) | (800,0,−37) | 43 | (429,−675,71) | (−429,675,−71) | ||
| 10 | (341,724,45) | (−341,−724,−45) | 27 | (−794,−100,63) | (794,100,−63) | 44 | (510,−616,28) | (−510,616,−28) | ||
| 11 | (247,761,55) | (−247,−761,−55) | 28 | (−775,−199,36) | (775,199,−36) | 45 | (583,−548,72) | (−583,548,−72) | ||
| 12 | (150,786,44) | (−150,−786,−44) | 29 | (−744,−295,64) | (744,295,−64) | 46 | (647,−470,27) | (−647,470,−27) | ||
| 13 | (50,798,56) | (−50,−798,−56) | 30 | (−701,−385,35) | (701,385,−35) | 47 | (701,−385,73) | (−701,385,−73) | ||
| 14 | (−50,798,43) | (50,−798,−43) | 31 | (−647,−470,65) | (647,470,−65) | 48 | (744,−295,26) | (−744,295,−26) | ||
| 15 | (−150,786,57) | (150,−786,−57) | 32 | (−583,−548,34) | (583,548,−34) | 49 | (775,−199,74) | (−775, 199,−74) | ||
| 16 | (−247,761,42) | (247,−761,−42) | 33 | (−510,−616,66) | (510,616,−66) | 50 | (794,−100,25) | (−794,100,−25) | ||
| 17 | (−341,724,58) | (341,−724,−58) | 34 | (−429,−675,33) | (429,675,−33) | − | − | − |
| 1 |
CHUNG S J, PARANJAPE A A, DAMES P, et al A survey on aerial swarm robotics. IEEE Trans. on Robotics, 2018, 34 (4): 837- 855.
doi: 10.1109/TRO.2018.2861318 |
| 2 |
LIU Z S, GUO M, BAO W M, et al Fast and adaptive multi-agent planning under collaborative temporal logic tasks via poset products. Research, 2024, 7, 0337.
doi: 10.34133/research.0337 |
| 3 |
ZHANG J D, GUO Y K, ZHENG L H, et al Real-time UAV path planning based on LSTM network. Journal of Systems Engineering and Electronics, 2024, 35 (2): 374- 385.
doi: 10.23919/JSEE.2023.000157 |
| 4 |
ZHANG J C, AN Y Q, CAO J N, et al UAV trajectory planning for complex open storage environments based on an improved RRT algorithm. IEEE Access, 2023, 11, 23189- 23204.
doi: 10.1109/ACCESS.2023.3252018 |
| 5 | ZHAO J M, HE H Z, WANG S Q, et al Joint trajectory planning for multiple UAVs target tracking and obstacle avoidance in a complicated environment. Acta Armamentarii, 2023, 44 (9): 2685- 2696. |
| 6 |
GU J J, SU T, WANG Q H, et al Multiple moving targets surveillance based on a cooperative network for multi-UAV. IEEE Communications Magazine, 2018, 56 (4): 82- 89.
doi: 10.1109/MCOM.2018.1700422 |
| 7 |
HU W J, YU Y, LIU S M, et al Multi-UAV coverage path planning: a distributed online cooperation method. IEEE Trans. on Vehicular Technology, 2023, 72 (9): 11727- 11740.
doi: 10.1109/TVT.2023.3303277 |
| 8 |
SUN C, LIU Y C, DAI R, et al Two approaches for path planning of unmanned aerial vehicles with avoidance zones. Journal of Guidance, Control, and Dynamics, 2017, 40 (8): 2076- 2083.
doi: 10.2514/1.G002314 |
| 9 |
ZHENG D, ZHANG Y F, LI F, et al UAVs cooperative task assignment and trajectory optimization with safety and time constraints. Defence Technology, 2023, 20, 149- 161.
doi: 10.1016/j.dt.2022.01.011 |
| 10 |
ZHANG J, CUI Y N, REN J Dynamic mission planning algorithm for UAV formation in battlefield environment. IEEE Trans. on Aerospace and Electronic Systems, 2023, 59 (4): 3750- 3765.
doi: 10.1109/TAES.2022.3231244 |
| 11 | OH H, KIM S, SHIN H S, et al. Coordinated standoff tracking of moving target groups using multiple UAVs. IEEE Trans. on Aerospace & Electronic Systems, 2015, 51(2): 1501−1504. |
| 12 |
UPADHYAY S, RATNOO A Smooth path planning for unmanned aerial vehicles with airspace restrictions. Journal of Guidance, Control, and Dynamics, 2017, 40 (7): 1596- 1612.
doi: 10.2514/1.G002400 |
| 13 |
LUO J, LIANG Q C, LI H UAV penetration mission path planning based on improved holonic particle swarm optimization. Journal of Systems Engineering and Electronics, 2023, 34 (1): 197- 213.
doi: 10.23919/JSEE.2022.000132 |
| 14 |
YUAN M S, ZHOU T L, CHEN M Improved lazy theta* algorithm based on octree map for path planning of UAV. Defence Technology, 2023, 23, 8- 18.
doi: 10.1016/j.dt.2022.01.006 |
| 15 |
YAO W R, CHEN Y, FU J Y, et al Evolutionary utility prediction matrix-based mission planning for unmanned aerial vehicles in complex urban environments. IEEE Trans. on Intelligent Vehicles, 2023, 8 (2): 1068- 1080.
doi: 10.1109/TIV.2022.3192525 |
| 16 |
XIANG J, CHEN J, LIU Y C Hybrid multiscale search for dynamic planning of multi-agent drone traffic. Journal of Guidance, Control, and Dynamics, 2023, 46 (10): 1963- 1974.
doi: 10.2514/1.G007343 |
| 17 |
LIU S, SUN D, ZHU C A A dynamic priority based path planning for cooperation of multiple mobile robots in formation forming. Robotics and Computer-Integrated Manufacturing, 2014, 30 (6): 589- 596.
doi: 10.1016/j.rcim.2014.04.002 |
| 18 |
GREGOIRE J, CAP M, FRAZZOLI E Locally-optimal multi-robot navigation under delaying disturbances using homotopy constraints. Autonomous Robots, 2018, 42 (4): 895- 907.
doi: 10.1007/s10514-017-9673-6 |
| 19 | BERG J V D, SNOEYINK J, LIN M C, et al. Centralized path planning for multiple robots: optimal decoupling into sequential plans. Proc. of the Robotics: Science and Systems V, 2009. DOI:10.15607/RSS.2009.V.018. |
| 20 | XU G T, WANG Z, CAO Y, et al Dynamic priority decoupled UAV swarm trajectory planning using distributed sequential convex programming. Acta Aeronautica et Astronautica Sinica, 2022, 43 (2): 325059. |
| 21 |
BENNEWITZ M, BURGARD W, THRUN S Finding and optimizing solvable priority schemes for decoupled path planning techniques for teams of mobile robots. Robotics and Autonomous Systems, 2002, 41 (2/3): 89- 99.
doi: 10.1016/S0921-8890(02)00256-7 |
| 22 |
MA X L, MEI H Mobile robot global path planning based on improved ant colony system algorithm with potential field. Journal of Mechanical Engineering, 2021, 57 (1): 19- 27.
doi: 10.3901/JME.2021.01.019 |
| 23 | ZHOU Q P, WEI Y, HE W, et al. Research on obstacle avoidance algorithm of fixed-wing UAV swarms based on improved artificial potential field. Proc. of the International Conference on Automation, Robotics and Computer Engineering, 2022. DOI: 10.1109/ICARCE55724.2022.10046495. |
| 24 |
SCHMITT L, FICHTER W Collision-avoidance framework for small fixed-wing unmanned aerial vehicles. Journal of Guidance, Control, and Dynamics, 2014, 37 (4): 1323- 1329.
doi: 10.2514/1.G000226 |
| 25 |
FIORINI P, SHILLER Z Motion planning in dynamic environments using velocity obstacles. International Journal of Robotics Research, 1998, 17 (7): 760- 772.
doi: 10.1177/027836499801700706 |
| 26 |
HUANG J H, ZENG J, CHI X M, et al Velocity obstacle for polytopic collision avoidance for distributed multi-robot systems. IEEE Robotics and Automation Letters, 2023, 8 (6): 3502- 3509.
doi: 10.1109/LRA.2023.3269295 |
| 27 | DINKAR K R, GHOSH S. Indicator probabilistic acceleration velocity obstacles for dynamic collision avoidance in uncertain environments. Proc. of the AIAA Scitech Forum, 2021. DOI: 10.2514/6.2021-2013. |
| 28 | MUJUMDAR A, PADHI R Reactive collision avoidance of using nonlinear geometric and differential geometric guidance. Journal of Guidance, Control, and Dynamics, 2011, 34 (1): 303- 311. |
| 29 |
DU Z H, ZHAO D, SHI J P, et al Formation flight in complex environments using an artificial potential field. Journal of Aerospace Information Systems, 2021, 18 (7): 464- 475.
doi: 10.2514/1.I010870 |
| 30 |
SNAPE J, BERG J V D, GUY S J, et al The hybrid reciprocal velocity obstacle. IEEE Trans. on Robotics, 2011, 27 (4): 696- 706.
doi: 10.1109/TRO.2011.2120810 |
| 31 |
JENIE Y I, KAMPEN E J V, VISSER C C D, et al Selective velocity obstacle method for deconflicting maneuvers applied to unmanned aerial vehicles. Journal of Guidance, Control, and Dynamics, 2015, 38 (6): 1140- 1146.
doi: 10.2514/1.G000737 |
| 32 | ZHOU Z L, LONG T, CAO Y, et al. Range compensation based cooperative online path planning for multiple fixed-wing UAV system. Proc. of the International Conference on Autonomous Unmanned Systems, 2021. DOI:10.1007/978-981-16-9492-9_295. |
| [1] | Yixin HU, Yun XU, Zhaohui DANG. Time-efficient cooperative attack strategy considering collision avoidance for missile swarm [J]. Journal of Systems Engineering and Electronics, 2025, 36(5): 1306-1316. |
| [2] | Xiuxia YANG, Yi ZHANG, Weiwei ZHOU. Obstacle avoidance method of three-dimensional obstacle spherical cap [J]. Journal of Systems Engineering and Electronics, 2018, 29(5): 1058-1068. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||