
Journal of Systems Engineering and Electronics ›› 2025, Vol. 36 ›› Issue (6): 1532-1547.doi: 10.23919/JSEE.2025.000120
• SYSTEMS ENGINEERING • Previous Articles
Meng LIU1(
), Linman LI1(
), Xinyi LIU2(
), Ershun PAN1,*(
)
Received:2025-05-05
Accepted:2025-07-30
Online:2025-12-18
Published:2026-01-07
Contact:
Ershun PAN
E-mail:liumeng2022@sjtu.edu.cn;foreverivy@sjtu.edu.cn;liuxinyi@comac.intra;pes@sjtu.edu.cn
About author:Supported by:Meng LIU, Linman LI, Xinyi LIU, Ershun PAN. A multi-pass heuristic for multi-skilled worker scheduling in aircraft final assembly line with variable duration[J]. Journal of Systems Engineering and Electronics, 2025, 36(6): 1532-1547.
Table 1
Notations in the model"
| Variable | Description |
| Binary variable: 1, if activity period | |
| Binary variable: 1, if activity activity | |
| Binary variable: 1, if worker activity | |
| Non-negative integer variable: start time of activity | |
| Non-negative integer variable: finish time of activity |
Table 2
APRs"
| APR | Function | Formula |
| SPT | Min | |
| LPT | Min | |
| EST | Min | |
| EFT | Min | |
| LFT | Min | |
| LST | Min | |
| SLK | Min | |
| MIS | Max | |
| MTS | Max | |
| GRPW | Max | |
| GRPW* | Max | |
| WRS | Min | |
| SRS | Min | |
| RR | Rand | − |
Table 3
WPRs"
| WPR | Function | |
| HBF | Max | |
| LBF | Min | |
| HDF | Max | |
| LDF | Min | |
| HSCF | Max | |
| LSCF | Min | |
| HDCF | Max | |
| LDCF | Min | |
| RR | Rand |
Table 4
Parameter settings and instance distribution"
| Parameter | Instance information |
| Number of activities | Values in {30, 60, 90}; 625 instances per value |
| SP | Values in {0.1, 0.3, 0.5, 0.7, 0.9}; 375 instances per value |
| SS | Values in {0.1, 0.3, 0.5, 0.7, 0.9}; 375 instances per value |
| Number of workspaces | Values in {4, 8, 12}, matched to the three activity-number scales |
Table 5
Comparison between GUROBI and MPRH"
| Matrics | GUROBI | MPRH | ||||||
| OPT/% | FNO/% | CPU/s | Gap/% | CPU/s | ||||
| Scale | 30 | 95.20 | 4.80 | 264.8 | 5.84 | 0.044 | ||
| 60 | 89.60 | 7.20 | 731.0 | 2.58 | 0.129 | |||
| 90 | 76.80 | 4.00 | −1.37 | 0.288 | ||||
| SP | 0.1 | 58.67 | 18.67 | 6.78 | 0.249 | |||
| 0.3 | 86.67 | 2.67 | 659.6 | 4.58 | 0.147 | |||
| 0.5 | 92.00 | 5.33 | 587.5 | −2.06 | 0.132 | |||
| 0.7 | 98.67 | 0.00 | 304.4 | 0.48 | 0.127 | |||
| 0.9 | 100.00 | 0.00 | 335.5 | 0.03 | 0.116 | |||
| SS | 0.1 | 65.33 | 16.00 | 1.23 | 0.112 | |||
| 0.3 | 86.67 | 4.00 | 774.8 | 3.32 | 0.138 | |||
| 0.5 | 93.33 | 2.67 | 479.1 | 1.51 | 0.156 | |||
| 0.7 | 94.67 | 0.00 | 311.5 | 2.56 | 0.178 | |||
| 0.9 | 96.00 | 4.00 | 360.1 | 0.59 | 0.186 | |||
| Overall | 87.20 | 5.33 | 718.36 | 2.01 | 0.154 | |||
| 1 |
MEI Z Y, MAROPOULOS P G Review of the application of flexible, measurement-assisted assembly technology in aircraft manufacturing. Journal of Engineering Manufacture, 2014, 228 (10): 1185- 1197.
doi: 10.1177/0954405413517387 |
| 2 |
LU Z Q, ZHU H M, HAN X, et al Integrated modelling and algorithm of material delivery and line-side storage for aircraft moving assembly lines. International Journal of Production Research, 2019, 57 (18): 5842- 5856.
doi: 10.1080/00207543.2018.1554917 |
| 3 | BAO Z K, CHEN L, QIU K J An aircraft final assembly line balancing problem considering resource constraints and parallel task scheduling. Computers & Industrial Engineering, 2023, 182, 109436. |
| 4 |
FANG P C, YANG J J, LIAO Q M, et al Flexible worker allocation in aircraft final assembly line using multiobjective evolutionary algorithms. IEEE Trans. on Industrial Informatics, 2021, 17 (11): 7468- 7478.
doi: 10.1109/TII.2021.3051896 |
| 5 |
ARKHIPOV D, BATTAIA O, CEGARRA J, et al Operator assignment problem in aircraft assembly lines: a new planning approach taking into account economic and ergonomic constraints. Procedia CIRP, 2018, 76, 63- 66.
doi: 10.1016/j.procir.2018.01.020 |
| 6 |
HARTMANN S, BRISKORN D An updated survey of variants and extensions of the resource-constrained project scheduling problem. European Journal of Operational Research, 2022, 297 (1): 1- 14.
doi: 10.1016/j.ejor.2021.05.004 |
| 7 |
SHAN S Q, HU Z J, LIU Z L, et al An adaptive genetic algorithm for demand-driven and resource-constrained project scheduling in aircraft assembly. Information Technology and Management, 2017, 18 (1): 41- 53.
doi: 10.1007/s10799-015-0223-7 |
| 8 | CAI H, SU Y, SHEN T. Research on intelligent schedule of aircraft assembly workshop. Proc. of the 12th International Conference on Intelligent Human-Machine Systems and Cybernetics, 2020. DOI: 10.1109/IHMSC49165.2020.10091. |
| 9 |
REN Y F, LU Z Q, LIU X Y A branch-and-bound embedded genetic algorithm for resource-constrained project scheduling problem with resource transfer time of aircraft moving assembly line. Optimization Letters, 2020, 14 (8): 2161- 2195.
doi: 10.1007/s11590-020-01542-x |
| 10 |
LOVATO D, GUILLAUME R, THIERRY C, et al Managing disruptions in aircraft assembly lines with staircase criteria. International Journal of Production Research, 2023, 61 (2): 632- 648.
doi: 10.1080/00207543.2021.2011982 |
| 11 |
REN Y F, LU Z Q A flexible resource investment problem based on project splitting for aircraft moving assembly line. Assembly Automation, 2019, 39 (4): 532- 547.
doi: 10.1108/AA-09-2018-0126 |
| 12 | AFSHAR-NADJAFI B Multi-skilling in scheduling problems: a review on models, methods and applications. Computers & Industrial Engineering, 2021, 151, 107004. |
| 13 |
LI Y Y, LIN J, WANG Z J Multi-skill resource constrained project scheduling using a multi-objective discrete jaya algorithm. Applied Intelligence, 2022, 52 (5): 5718- 5738.
doi: 10.1007/s10489-021-02608-8 |
| 14 | CHEN R, LIANG C Y, GU D X, et al A competence-time-quality scheduling model of multi-skilled staff for IT project portfolio. Computers & Industrial Engineering, 2020, 139, 106183. |
| 15 |
LIU S S, WANG C J Optimizing linear project scheduling with multi-skilled crews. Automation in Construction, 2012, 24, 16- 23.
doi: 10.1016/j.autcon.2011.12.009 |
| 16 |
NASIRIAN A, ARASHPOUR M, ABBASI B, et al Optimal work assignment to multiskilled resources in prefabricated construction. Journal of Construction Engineering and Management, 2019, 145 (4): 04019011.
doi: 10.1061/(ASCE)CO.1943-7862.0001627 |
| 17 |
ZAREI F, ARASHPOUR M, MIRNEZAMI S A, et al Multi-skill resource-constrained project scheduling problem considering overlapping: fuzzy multi-objective programming approach to a case study. International Journal of Construction Management, 2024, 24 (8): 820- 833.
doi: 10.1080/15623599.2023.2260696 |
| 18 | BELLENGUEZ O, NERON E. Lower bounds for the multi-skill project scheduling problem with hierarchical levels of skills. BURKE E, TRICK M, ed. Practice and theory of automated timetabling V. Berlin: Springer, 2005. |
| 19 |
VALLS V, PEREZ A, QUINTANILLA S Skilled workforce scheduling in service centres. European Journal of Operational Research, 2009, 193 (3): 791- 804.
doi: 10.1016/j.ejor.2007.11.008 |
| 20 | SNAUWAERT J, VANHOUCKE M Mathematical formulations for project scheduling problems with categorical and hierarchical skills. Computers & Industrial Engineering, 2022, 169, 108147. |
| 21 |
CHAND S, SINGH H, RAY T Evolving heuristics for the resource constrained project scheduling problem with dynamic resource disruptions. Swarm and Evolutionary Computation, 2019, 44, 897- 912.
doi: 10.1016/j.swevo.2018.09.007 |
| 22 |
DING H Y, ZHUANG C B, LIU J H Extensions of the resource-constrained project scheduling problem. Automation in Construction, 2023, 153, 104958.
doi: 10.1016/j.autcon.2023.104958 |
| 23 |
LIN J, ZHU L, GAO K Z A genetic programming hyper-heuristic approach for the multi-skill resource constrained project scheduling problem. Expert Systems with Applications, 2020, 140, 112915.
doi: 10.1016/j.eswa.2019.112915 |
| 24 | CHAKRABORTTY R K, RAHMAN H F, RYAN M J Efficient priority rules for project scheduling under dynamic environments: a heuristic approach. Computers & Industrial Engineering, 2020, 140, 106287. |
| 25 |
KELLEGOZ T, TOKLU B A priority rule-based constructive heuristic and an improvement method for balancing assembly lines with parallel multi-manned workstations. International Journal of Production Research, 2015, 53 (3): 736- 756.
doi: 10.1080/00207543.2014.920548 |
| 26 | TURKAKIN O H, ARDITI D, MANISALI E Comparison of heuristic priority rules in the solution of the resource-constrained project scheduling problem. Sustainability, 2021, 13 (17): 1- 17. |
| 27 |
ALMEIDA B F, CORREIA I, SALDANHA-DA-GAMA F Priority-based heuristics for the multi-skill resource constrained project scheduling problem. Expert Systems with Applications, 2016, 57, 91- 103.
doi: 10.1016/j.eswa.2016.03.017 |
| 28 | ZHENG Q, XI L Heuristics for aircraft moving assembly line scheduling problem. Industrial Engineering and Management, 2015, 20 (2): 116- 121. |
| 29 |
WILLIS R J Critical path analysis and resource constrained project scheduling-theory and practice. European Journal of Operational Research, 1985, 21 (2): 149- 155.
doi: 10.1016/0377-2217(85)90026-8 |
| 30 |
ZAREEI S Project scheduling for constructing biogas plant using critical path method. Renewable and Sustainable Energy Reviews, 2018, 81, 756- 759.
doi: 10.1016/j.rser.2017.08.025 |
| 31 |
SNAUWAERT J, VANHOUCKE M A new algorithm for resource-constrained project scheduling with breadth and depth of skills. European Journal of Operational Research, 2021, 292 (1): 43- 59.
doi: 10.1016/j.ejor.2020.10.032 |
| 32 |
BELLENGUEZ O, NERON E A branch-and-bound method for solving multi-skill project scheduling problem. Operations Research, 2007, 41, 155- 170.
doi: 10.1051/ro:2007015 |
| 33 |
SNAUWAERT J, VANHOUCKE M A classification and new benchmark instances for the multi-skilled resource-constrained project scheduling problem. European Journal of Operational Research, 2023, 307 (1): 1- 19.
doi: 10.1016/j.ejor.2022.05.049 |
| 34 | LIU M. MSPVD_AFAL data and results. https://github.com/liumeng2022/MSPVD_AFAL. |
| No related articles found! |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||