Aiming at the characteristics of autonomy, confrontation, and uncertainty in unmanned aerial vehicle (UAV) swarm operations, case-based reasoning (CBR) technology with advantages such as weak dependence on domain knowledge and efficient problem-solving is introduced, and a recommendation method for UAV swarm operation strategies based on CBR is proposed. Firstly, we design a universal framework for UAV swarm operation strategies from three dimensions: operation effectiveness, time, and cost. Secondly, based on the representation of operation cases, certain, fuzzy, interval, and classification attribute similarity calculation methods, as well as entropy-based attribute weight allocation methods, are suggested to support the calculation of global similarity of cases. This method is utilized to match the source case with the most similarity from the historical case library, to obtain the optimal recommendation strategy for the target case. Finally, in the form of red blue confrontation, a UAV swarm operation strategy recommendation case is constructed based on actual battle cases, and a system simulation analysis is conducted. The results show that the strategy given in the example performs the best in three evaluation indicators, including cost-effectiveness, and overall outperforms other operation strategies. Therefore, the proposed method has advantages such as high real-time performance and interpretability, and can address the issue of recommending UAV swarm operation strategies in complex battlefield environments across both online and offline modes. At the same time, this study could also provide new ideas for the selection of UAV swarm operation strategies.