
Journal of Systems Engineering and Electronics ›› 2025, Vol. 36 ›› Issue (5): 1281-1295.doi: 10.23919/JSEE.2025.000129
• SYSTEMS ENGINEERING • Previous Articles
Wei LIU1(
), Lin ZHANG1(
), Tao YUN2(
), Xianliang MENG1(
), Bo ZHANG1,*(
), Yafei SONG1(
)
Received:2023-11-10
Online:2025-10-18
Published:2025-10-24
Contact:
Bo ZHANG
E-mail:long_waver@163.com;tymy09@163.com;yuntao66@163.com;18999891215@163.com;zhb8706@163.com;yafei_song@163.com
About author:Supported by:Wei LIU, Lin ZHANG, Tao YUN, Xianliang MENG, Bo ZHANG, Yafei SONG. Damage effectiveness characterization model of laser weapon systems under the impact of spatial position and atmospheric condition[J]. Journal of Systems Engineering and Electronics, 2025, 36(5): 1281-1295.
Table 3
Target parameter settings"
| Parameter | Value |
| Density/(g/cm2) | 2.77 |
| R | 0.8 |
| Melting point/K | 911 |
| Latent heat of fusion/(J/g) | 401 |
| Boiling point/K | |
| Latent heat of vaporization/(J/g) | |
| Specific heat of solid state/(J/(g·K)) | 1.0 |
| Thermal conductivity of solid state /(J/(cm·K·s)) | 1.64 |
| Specific heat of liquid state/(g·K) | 1.3 |
| Thermal conductivity of liquid state /(J/(cm·K·s)) | 0.564 |
| 1 |
AFFAN A S, MOHSIN M, ZUBAIR A S Survey and technological analysis of laser and its defense applications. Defence Technology, 2021, 17 (2): 583- 592.
doi: 10.1016/j.dt.2020.02.012 |
| 2 | LUDEWIGT K, LIEM A, STUHR U, et al. High-power laser development for laser weapons. Strasbourg: SPIE Press, 2019. |
| 3 |
ANDY E Military technology: laser weapons get real. Nature, 2015, 521, 408- 411.
doi: 10.1038/521408a |
| 4 |
YUN Q J, SONG B F, PEI Y Modeling the impact of high energy laser weapon on the mission effectiveness of unmanned combat aerial vehicles. IEEE Access, 2020, 8, 32246- 32257.
doi: 10.1109/ACCESS.2020.2973492 |
| 5 | ANTONIOS L. Experimental design of a UCAV-based high-energy laser weapon. Monterey: Naval Postgraduate School, 2016. |
| 6 | YANG K W, LI J C, LIU M D, et al Complex systems and network science: a survey. Journal of Systems Engineering and Electronics, 2023, 34 (3): 543- 573. |
| 7 |
LYU C Y, ZHAN R J Global analysis of active defense technologies for unmanned aerial vehicle. IEEE Aerospace and Electronic Systems Magazine, 2022, 37 (1): 6- 31.
doi: 10.1109/MAES.2021.3115205 |
| 8 |
KHALATPOUR A, PAULSEN A K, DEIMERT C, et al High-power portable terahertz laser systems. Nature Photonics, 2021, 15 (1): 16- 20.
doi: 10.1038/s41566-020-00707-5 |
| 9 |
ZENG Y Q, CHATTOPADHYAY U, ZHU B F, et al Electrically pumped topological laser with valley edge modes. Nature, 2020, 578, 246- 250.
doi: 10.1038/s41586-020-1981-x |
| 10 |
TUO W X, LI X, JI Y, et al Mechanical design and determination of bandwidth for a two-axis inertial reference unit. Mechanical Systems and Signal Processing, 2022, 172, 108962.
doi: 10.1016/j.ymssp.2022.108962 |
| 11 | JAN K J, PRZEMYSLAW G Analysis of the caustics of partially coherently combined truncated Gaussian beams. Applied Optics, 2020, 59 (11): 3340- 3346. |
| 12 | JAN K J, PRZEMYSLAW G Effect of beam profile and partial coherence on coherent beam combining performance. Optics Communications, 2019, 442, 40- 45. |
| 13 | JAN K J, PRZEMYSLAW G Impact of atmospheric turbulence on coherent beam combining for laser weapon systems. Defence Technology, 2021, 17 (4): 1160- 1167. |
| 14 | HUANG Y B, CAO Z, LU X J Measurement of high-resolution total atmospheric transmittance and retrieval of water vapor with laser heterodyne technology. Chinese Journal of Quantum Electronics, 2020, 37 (4): 497- 505. |
| 15 |
QUATRESOOZ F, VANHOENACKER D, OESTGES C Computation of optical refractive index structure parameter from its statistical definition using radiosonde data. Radio Science, 2023, 58 (1): 1- 16.
doi: 10.1029/2022RS007624 |
| 16 |
TOYOSHIMA M, SASAKI T, TAKENAKA H, et al Scintillation model of laser beam propagation in satellite-to-ground bidirectional atmospheric channels. Acta Astronautica, 2012, 80, 58- 64.
doi: 10.1016/j.actaastro.2012.05.009 |
| 17 | SIDDIQUI A, DUBEY A K Recent trends in laser cladding and surface alloying. Optics & Laser Technology, 2021, 134, 106619. |
| 18 |
LARIMIAN T, ALMANGOUR B, GRZESIAK D, et al Effect of laser spot size, scanning strategy, scanning speed, and laser power on microstructure and mechanical behavior of 316L stainless steel fabricated via selective laser melting. Journal of Materials Engineering and Performance, 2022, 31 (3): 2205- 2224.
doi: 10.1007/s11665-021-06387-8 |
| 19 |
LARIMIAN T, KANNAN M, GRZESIAK D, et al Effect of energy density and scanning strategy on densification, microstructure and mechanical properties of 316L stainless steel processed via selective laser melting. Materials Science and Engineering: A, 2020, 770, 138455.
doi: 10.1016/j.msea.2019.138455 |
| 20 | DANIEL M E. Simulated laser weapon system decision support to combat drone swarms with machine learning. Monterey: Naval Postgraduate School, 2021. |
| 21 | WAN J. Damage effect evaluation of laser weapon system. Proc. of the Second Symposium on Novel Technology of X-Ray Imaging, 2019: 130–137. |
| 22 |
SHI J W, SUN S Y, XIE J, et al Simulation analysis of dynamic damage probability modelling for laser systems. Mathematics, 2023, 11 (19): 4097.
doi: 10.3390/math11194097 |
| 23 |
LIU L, XU C Y, ZENG W B, et al Multiparameter influence analysis of the target spot power distribution of airborne laser. IEEE Access, 2022, 10, 80639- 80650.
doi: 10.1109/ACCESS.2022.3195032 |
| 24 |
ANTONIOS L, ANDREAS T, KEITH C An application of artificial neural networks to estimate the performance of high-energy laser weapons in maritime environments. Technologies, 2022, 10 (3): 71.
doi: 10.3390/technologies10030071 |
| 25 | BAHMAN Z. Directed energy weapons physics of high energy lasers (HEL). Berlin: Springer, 2016. |
| 26 | KIM J Target aiming point focusing strategy for destroying a short-range target using distributed laser systems. IEEE Access, 2023, 11, 32935- 32941. |
| 27 | ZHANG J R, FANG Z G, YE F, et al Key indexes identifying approach of weapon equipment system-of-systems effectiveness integrating Bayes method and dynamic grey incidence analysis model. Journal of Systems Engineering and Electronics, 2024, 35 (6): 1482- 1490. |
| 28 |
QIAO C H, FAN C Y, HUANG Y B, et al Scaling laws of high energy laser propagation through atmosphere. Chinese Journal of Laser, 2010, 37 (2): 433- 437.
doi: 10.3788/CJL20103702.0433 |
| 29 | SUN X W, ZHANG Q, ZHONG Z Q, et al Scaling law for beam spreading during high-energy laser propagation in atmosphere. Acta Optica Sinica, 2022, 42 (24): 74- 80. |
| 30 | TABAN L, BANDAR A, DARIUSZ G, et al Effect of laser spot size, scanning strategy, scanning speed, and laser power on microstructure and mechanical behavior of 316L stainless steel fabricated via selective laser melting. Journal of Materials Engineering and Performance, 2022, 31, 2205- 2224. |
| 31 |
TOYOSHIMA M, TAKENAKA H, TAKAYAMA Y Atmospheric turbulence-induced fading channel model for space-to-ground laser communications links. Optics Express, 2011, 19 (17): 15965- 15975.
doi: 10.1364/OE.19.015965 |
| 32 | VOROB V V Thermal blooming of laser beams in the atmosphere. Progress in Quantum Electronics, 1991, 15 (1): 1- 152. |
| 33 |
BRADLEY L C, HERRMANN J Phase compensation for thermal blooming. Applied Optics, 1974, 13 (2): 331- 334.
doi: 10.1364/AO.13.000331 |
| 34 |
ABITAN H, BOHR H, BUCHHAVE P Correction to the Beer-Lambert-Bouguer law for optical absorption. Applied Optics, 2008, 47 (29): 5354- 5357.
doi: 10.1364/AO.47.005354 |
| 35 | SONG N Q, ZHANG H C, WANG L, et al Damage power modeling and simulation of high energy laser weapon. Acta Armamentarii, 2016, 37 (S1): 146- 151. |
| 36 | BAHMAN Z. Thermal effects of high power laser energy on materials. Berlin: Springer, 2021. |
| 37 |
TAMANNA N, CROUCH R, NAHER S Progress in numerical simulation of the laser cladding process. Optics and Lasers in Engineering, 2019, 122, 151- 163.
doi: 10.1016/j.optlaseng.2019.05.026 |
| 38 | WISNIEWSKI T S. Transient heat conduction in semi-infinite solid with specified surface heat flux. Dordrecht: Springer Netherlands, 2014: 6164–6171. |
| 39 | CHEN Z W, ZHOU Z M, ZHANG L G, et al Mission reliability modeling and evaluation for reconfigurable unmanned weapon system-of-systems based on effective operation loop. Journal of Systems Engineering and Electronics, 2024, 34 (3): 588- 597. |
| 40 | SHI L K, PEI Y, YUN Q J, et al Agent-based effectiveness evaluation method and impact analysis of airborne laser weapon system in cooperation combat. Chinese Journal of Aeronautics, 2023, 36 (4): 442- 454. |
| 41 | DING Y, JIANG F, ZHENG R S, et al. Overview of high energy laser weapon development in USA (invited). Electro-optic Technology Application, 2021, 36(6): 1–9. (in Chinese) |
| 42 | KNEIZYS F, SHETTLE E, ABREU L, et al. User guide to LOWTRAN 7. Bedford: Air Force Geophysics Laboratory, 1988. |
| 43 |
ELFAHAM M M, MOSTAFA A M, NASR G M Unmanned aerial vehicle (UAV) manufacturing materials: synthesis, spectroscopic characterization and dynamic mechanical analysis (DMA). Journal of Molecular Structure, 2020, 1201, 127211.
doi: 10.1016/j.molstruc.2019.127211 |
| 44 | LIU L, XU C Y, CAI S, et al Research on the damage characteristics of a UAV flight control system irradiated by a continuous laser. Aerospace, 2025, 12 (2): 161. |
| 45 | LI J X, MEI Z G, SHEN Q, et al. Analysis on core capabilities and key technologies of future air defense anti-missile operations. Proc. of the International Conference on Man-Machine-Environment System Engineering, 2020: 1047–1054. |
| 46 | WU P F, JA L L Experimental measurement and analysis of atmospheric coherence length in Xi’an area. Laser & Optoelectronics Progress, 2020, 57 (9): 33- 40. |
| No related articles found! |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||