
Journal of Systems Engineering and Electronics ›› 2025, Vol. 36 ›› Issue (5): 1202-1215.doi: 10.23919/JSEE.2025.000138
• SYSTEMS ENGINEERING • Previous Articles
Kebin CHEN1,2(
), Xuping JIANG2,*(
), Guangjun ZENG2(
), Wenjing YANG2(
), Xue ZHENG2(
)
Received:2025-10-25
Online:2025-10-18
Published:2025-10-24
Contact:
Xuping JIANG
E-mail:chenkebin17@nudt.edu.cn;jxpjiangxuping@163.com;guangjun_zeng@nudt.edu.cn;xianywj@sohu.com;snowzx89@foxmail.com
About author:Kebin CHEN, Xuping JIANG, Guangjun ZENG, Wenjing YANG, Xue ZHENG. Functional cartography of heterogeneous combat networks using operational chain-based label propagation algorithm[J]. Journal of Systems Engineering and Electronics, 2025, 36(5): 1202-1215.
| 1 |
CHEN W H, LI J C, JIANG J Heterogeneous combat network link prediction based on representation learning. IEEE Systems Journal, 2021, 15 (3): 4069- 4077.
doi: 10.1109/JSYST.2020.3028168 |
| 2 | CHEN L B, WANG C, ZENG C Y, et al. A novel method of heterogeneous combat network disintegration based on deep reinforcement learning. Frontiers in Physics, 2022, 10: 1021245. |
| 3 |
LI J C, GE B F, YANG K W, et al Meta-path based heterogeneous combat network link prediction. Physica A: Statistical Mechanics and its Applications, 2017, 482, 507- 523.
doi: 10.1016/j.physa.2017.04.126 |
| 4 |
GUIMERA R, NUNES A L A Functional cartography of complex metabolic networks. Nature, 2005, 433 (7028): 895- 900.
doi: 10.1038/nature03288 |
| 5 |
MATTAR M G, COLE M W, THOMPSONSCHILL S L, et al A functional cartography of cognitive systems. Plos Computational Biology, 2015, 11 (12): e1004533.
doi: 10.1371/journal.pcbi.1004533 |
| 6 |
FRADY E P, KAPOOR A, HORVITZ E, et al Scalable semisupervised functional neurocartography reveals canonical neurons in behavioral networks. Neural Computation, 2016, 28 (8): 1453- 1497.
doi: 10.1162/NECO_a_00852 |
| 7 |
LI J C, TAN Y, YANG K W, et al Structural robustness of combat networks of weapon system-of-systems based on the operation loop. International Journal of Systems Science, 2017, 48 (3): 659- 674.
doi: 10.1080/00207721.2016.1212429 |
| 8 |
JHA M, GUZZI P H, VELTRI P, et al Functional module extraction by ensembling the ensembles of selective module detectors. International Journal of Computational Biology and Drug Design, 2019, 12 (4): 345- 361.
doi: 10.1504/IJCBDD.2019.103599 |
| 9 | LI J C, ZHAO D L, GE B F, et al. Disintegration of operational capability of heterogeneous combat networks under incomplete information. IEEE Trans. on Systems, Man, and Cybernetics: Systems, 2018, 50(12): 5172−5179. |
| 10 |
CHEN K B, LU Y J, LIU Q, et al A method to validate operational capability index model of heterogeneous combat networks based on characteristic topology analysis. IEEE Access, 2020, 8, 59760- 59773.
doi: 10.1109/ACCESS.2020.2983082 |
| 11 | DELLER S, BOWLING S R, RABADI G A, et al Applying the information age combat model: quantitative analysis of network centric operations. Computational Modeling & Simulation Engineering Faculty Publications, 2009, 3 (1): 1- 25. |
| 12 |
LI J C, JIANG J, YANG K W, et al Research on functional robustness of heterogeneous combat networks. IEEE Systems Journal, 2019, 13 (2): 1487- 1495.
doi: 10.1109/JSYST.2018.2828779 |
| 13 | ALI H T, COUILLET R Improved spectral community detection in large heterogeneous networks. Journal of Machine Learning Research, 2018, 18 (225): 1- 49. |
| 14 |
LIU X, LIU W, MURATA T, et al A framework for community detection in heterogeneous multi-relational networks. Advances in Complex Systems, 2014, 17 (6): 1450018.
doi: 10.1142/S0219525914500180 |
| 15 |
LU M L, QU Z H, WANG Z L, et al Hete_MESE: multi-dimensional community detection algorithm based on multiplex network extraction and seed expansion for heterogeneous information networks. IEEE Access, 2018, 6, 73965- 73983.
doi: 10.1109/ACCESS.2018.2883638 |
| 16 |
HUANG M Q, ZOU G B, ZHANG B F, et al Overlapping community detection in heterogeneous social networks via the user model. Information Sciences, 2018, 432, 164- 84.
doi: 10.1016/j.ins.2017.11.055 |
| 17 |
KARIMI M A M, FATHIAN M Multiobjective approach for detecting communities in heterogeneous networks. Computational Intelligence, 2017, 33 (4): 980- 1004.
doi: 10.1111/coin.12137 |
| 18 | JEFFREY R C. An information age combat model. Newport: Alidade Incorporated, 2004. |
| 19 | LI J C, ZHAO D L, JIANG J, et al Capability oriented equipment contribution analysis in temporal combat networks. IEEE Trans. on Systems, Man, and Cybernetics: Systems, 2018, 51 (2): 696- 704. |
| 20 | LI J C, GE B F, JIANG J, et al High-end weapon equipment portfolio selection based on a heterogeneous network model. Journal of Global Optimization, 2018, 78, 743- 761. |
| 21 |
LI J C, GE B F, ZHAO D L, et al Meta-path-based weapon-target recommendation in heterogeneous combat network. IEEE Systems Journal, 2019, 13 (4): 4433- 4441.
doi: 10.1109/JSYST.2018.2890090 |
| 22 | LI J C, ZHAO D L, GE B F, et al A link prediction method for heterogeneous networks based on BP neural network. Physica A: Statistical Mechanics and its Applications, 2017, 495, 1- 17. |
| 23 | WANG Y Z, SHANG B L, SONG B F, et al Identification method of key node in operational system-of-systems network based on kill chian. Systems Engineering and Electronics, 2023, 45 (3): 736- 744. |
| 24 | XU R J, GONG L, XIE J, et al Operation network link importance evaluation and recovery strategy based on equipment system-of-systems resilience. Systems Engineering and Electronics, 2023, 45 (3): 139- 147. |
| 25 | SUN L N, CHEN Y L, CHEN Z W Invulnerability analysis of dynamically reconfigurable combat networks based on kill chain. Fire Control & Command Control, 2023, 48 (2): 12- 18. |
| 26 | YU B Q, LI X Y, CHENG S Q, et al A method for evaluating the effectiveness of land-air collaborative warfare system based on complex networks. Fire Control & Command Control, 2024, 49 (1): 105- 110. |
| 27 |
CHEN K B, LU Y J, GUO L, et al A genetic algorithm-based methodology for analyzing the characteristics of high-operational-capability combat networks. IEEE Access, 2022, 10, 14717- 14730.
doi: 10.1109/ACCESS.2022.3147517 |
| 28 |
YANG G L, ZHANG W M, XIU B X, et al Key potential-oriented criticality analysis for complex military organization based on FINC-E model. Computational and Mathematical Organization Theory, 2014, 20 (3): 278- 301.
doi: 10.1007/s10588-013-9163-0 |
| 29 | LI Y, XU Z X, CHEN K B, et al Research on information communications support force requirement of combat network. Command Control & Simulation, 2023, 45 (4): 145- 152. |
| 30 | CHEN K B, LU Y J, ZHENG X, et al Analysis of combat network function module and its operational capability. Journal of Command and Control, 2023, 9 (4): 405- 413. |
| 31 |
PIRCH S, MULLER F, IOFINOVA E, et al The VRNetzer platform enables interactive network analysis in virtual reality. Nature Communications, 2021, 12 (1): 2432.
doi: 10.1038/s41467-021-22570-w |
| 32 |
SHIH C T, LIN Y J, WANG C T, et al Diverse community structures in the neuronal-level connectome of the drosophila brain. Neuroinformatics, 2020, 18 (2): 267- 281.
doi: 10.1007/s12021-019-09443-w |
| 33 |
PERAZA-GOICOLEA J A, MARTINEZ-MONTES E, AUBERT E, et al Modeling functional resting-state brain networks through neural message passing on the human connectome. Neural Networks, 2020, 123, 52- 69.
doi: 10.1016/j.neunet.2019.11.014 |
| 34 |
RAVASZ E, SOMERA A L, MONGRU D A, et al Hierarchical organization of modularity in metabolic networks. Science, 2002, 297 (5586): 1551- 1555.
doi: 10.1126/science.1073374 |
| 35 | WANG B, CAI X, XU M H, et al. c Expert Systems with Applications, 2023, 230: 120552. |
| 36 | HARTWELL L H, HOPFIELD J J, LEIBLER S, et al From molecular to modular cell biology. Nature, 1999, 402 (6761): C47- C52. |
| 37 |
KRIEG J, KOESSLER L, JONAS J, et al Discrimination of a medial functional module within the temporal lobe using an effective connectivity model: a CCEP study. NeuroImage, 2017, 161, 219- 231.
doi: 10.1016/j.neuroimage.2017.07.061 |
| 38 |
KANEHISA M, FURUMICHI M, SATO Y, et al KEGG: integrating viruses and cellular organisms. Nucleic Acids Research, 2021, 49 (D1): D545- D551.
doi: 10.1093/nar/gkaa970 |
| 39 |
NEWMAN M, GIRVAN M Finding and evaluating community structure in networks. Physical Review E, 2004, 69 (2): 026113.
doi: 10.1103/PhysRevE.69.026113 |
| 40 |
GUPTA S K, SINGH D D P CBLA: a clique based louvain algorithm for detecting overlapping community. Procedia Computer Science, 2023, 218, 2201- 2209.
doi: 10.1016/j.procs.2023.01.196 |
| 41 |
LI H J, SONG S P, TAN W Z, et al Characterizing the fuzzy community structure in link graph via the likelihood optimization. Neurocomputing, 2022, 512, 482- 493.
doi: 10.1016/j.neucom.2022.09.013 |
| 42 |
ZHANG W T, SHANG R H, JIAO L C Large-scale community detection based on core node and layer-by-layer label propagation. Information Sciences, 2023, 632, 1- 18.
doi: 10.1016/j.ins.2023.02.090 |
| 43 | JI J Z, XIAO H H, YANG C C. HFADE-FMD: a hybrid approach of fireworks algorithm and differential evolution strategies for functional module detection in protein-protein interaction networks. Applied Intelligence, 2021, 51(2): 1118−1132. |
| 44 |
ZHENG X H, WU L, YE S, et al Simplified swarm optimization-based function module detection in protein–protein interaction networks. Applied Sciences, 2017, 7 (4): 412.
doi: 10.3390/app7040412 |
| 45 | WU S H, LI Z, ZHU X N A distributed community detection algorithm for large scale networks under stochastic block models. Computational Statistics & Data Analysis, 2023, 187, 107794. |
| 46 | XIE J, KELLEY S, SZYMANSKI B K Overlapping community detection in networks: the state-of-the-art and comparative study. ACM Computing Surveys, 2013, 45 (4): 43. |
| 47 |
LI T Y, ZHANG P Self-falsifiable hierarchical detection of overlapping communities on social networks. New Journal of Physics, 2020, 22 (3): 033014.
doi: 10.1088/1367-2630/ab73ca |
| 48 |
GARZA S E, SCHAEFFER S E Community detection with the label propagation algorithm: a survey. Physica A: Statistical Mechanics and its Applications, 2019, 534, 122058.
doi: 10.1016/j.physa.2019.122058 |
| 49 |
LU M L, ZHANG Z L, QU Z H, et al LPANNI: overlapping community detection using label propagation in large-scale complex networks. IEEE Trans. on Knowledge and Data Engineering, 2019, 31 (9): 1736- 1749.
doi: 10.1109/TKDE.2018.2866424 |
| 50 |
ZHOU T, LU L Y, ZHANG Y C Predicting missing links via local information. The European Physical Journal B, 2009, 71 (4): 623- 630.
doi: 10.1140/epjb/e2009-00335-8 |
| 51 | XIE J, SZYMANSKI B K, LIU X. SLPA: uncovering overlapping communities in social networks via a speaker-listener interaction dynamic process. Proc. of the IEEE 11th International Conference on Data Mining Workshops, 2011. |
| 52 |
NEWMAN M E Modularity and community structure in networks. Proceedings of the National Academy of Sciences, 2006, 103 (23): 8577- 8582.
doi: 10.1073/pnas.0601602103 |
| [1] | Jiuyao JIANG, Jichao LI, Kewei YANG. Weapon system portfolio selection based on structural robustness [J]. Journal of Systems Engineering and Electronics, 2020, 31(6): 1216-1229. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||