
Journal of Systems Engineering and Electronics ›› 2025, Vol. 36 ›› Issue (6): 1501-1531.doi: 10.23919/JSEE.2025.000139
• SYSTEMS ENGINEERING • Previous Articles
Mei XU1(
), Feng YANG1,*(
), Ting CHEN2(
)
Received:2025-03-05
Online:2025-12-18
Published:2026-01-07
Contact:
Feng YANG
E-mail:xmadyy@mail.ustc.edu.cn;fengyang@ustc.edu.cn;tinachen@mail.ustc.edu.cn
About author:Supported by:Mei XU, Feng YANG, Ting CHEN. Dynamic vehicle routing for a dual-channel distribution center with stochastic demands and shared resources[J]. Journal of Systems Engineering and Electronics, 2025, 36(6): 1501-1531.
Table 1
Notation in the first stage model"
| Parameter | Definition |
| Set of transportation nodes, indexed by | |
| Set of CCs. | |
| Set of ICs. | |
| Set of nodes of ICs and the depot. | |
| Set of nodes of customers. | |
| Set of vehicles. | |
| Set of trips. | |
| Maximum capacity of vehicles | |
| Travel speed of vehicles | |
| Travel time between transportation node | |
| Service time at transportation node | |
| Lower and upper bounds of the delivery time window for node | |
| A fixed, sufficiently large number | |
| Binary variable. If node | |
| Binary variable. If node | |
| Ready time for tour | |
| Departure time for tour | |
| Arrival time for node | |
| Service start time for node | |
| Late delivery time for node | |
| Return time for vehicle | |
| Overwork time for vehicle |
Table 2
Notation in the second stage model"
| Parameter | Definition |
| Set of periods during a day’s working hours. | |
| Set of random scenarios for demand realization. | |
| Set of nodes of CCs that generate new requests in period | |
| Set of nodes of CCs/ICs whose trip departure times are no earlier than the start of period in the latest schedule in scenario | |
| Set of CCs that generate new requests in scenario | |
| Set of trips in the latest schedule in scenario earlier than the start of period | |
| Binary parameter. If node scenario | |
| Start time of period | |
| Lower and upper bounds for the delivery time window of node | |
| Binary variable. If node otherwise, |
Table 3
New or changed concepts in the second stage model"
| Parameter | Definition |
| Set of nodes of CCs/ICs that belong to trips with a return time later than | |
| Set of ongoing trips at | |
| Binary parameter. If node otherwise, | |
| Binary variable. If the vehicle returns to the depot early after servicing node otherwise, | |
| Binary variable. If node |
Table 4
Results of ALNS configurations with varying criteria and operator combinations"
| Group C0 | Group C1 | Group C2 | ||||||||||||
| Cost/CNY | Time/s | Cost/CNY | Time/s | Cost/CNY | Time/s | |||||||||
| 2 | 158.19 | 0.60 | − | − | 156.95 | 220.33 | 0.78 | 4.98 | 157.05 | 219.60 | 0.72 | 4.35 | ||
| 3 | 255.34 | 2.70 | − | − | 214.13 | 16.14 | 30.00 | 223.87 | 996.77 | 12.32 | 24.65 | |||
| 4 | 219.97 | 12.41 | − | − | 208.31 | 5.30 | 20.66 | 209.05 | 4.96 | 20.36 | ||||
| 5 | 324.13 | 19.56 | − | − | 323.40 | 0.23 | 10.04 | 323.40 | 0.23 | 10.23 | ||||
| 6 | 228.81 | 14.54 | − | − | 227.14 | 0.73 | 11.80 | 227.12 | 0.74 | 11.92 | ||||
| Average | 237.29 | 9.96 | − | − | 225.99 | 4.64 | 15.49 | 228.10 | 3.79 | 14.30 | ||||
| Group C3 | Group C4 | Group C5 | ||||||||||||
| Cost/CNY | Time/s | Cost/CNY | Time/s | Cost/CNY | Time/s | |||||||||
| 2 | 156.85 | 247.27 | 0.85 | 5.61 | 157.06 | 186.73 | 0.71 | 4.30 | 157.07 | 182.99 | 0.71 | 4.23 | ||
| 3 | 213.72 | 16.30 | 31.34 | 214.19 | 824.24 | 16.12 | 31.34 | 215.28 | 811.41 | 15.69 | 30.34 | |||
| 4 | 209.87 | 4.59 | 20.66 | 209.97 | 4.55 | 20.66 | 208.19 | 5.36 | 20.66 | |||||
| 5 | 323.38 | 0.23 | 10.04 | 323.45 | 0.21 | 10.04 | 323.48 | 0.20 | 9.92 | |||||
| 6 | 227.16 | 0.72 | 12.26 | 229.95 | −0.50 | 31.09 | 227.13 | 0.73 | 11.88 | |||||
| Average | 226.20 | 4.54 | 15.98 | 226.92 | 4.22 | 19.48 | 226.23 | 4.54 | 15.41 | |||||
Table 5
Results of the small-scale instances"
| WTB policy | ATB policy | ACB policy | ||||||||||||||
| CPLEX | CPLEX | CPLEX | SA-RR | ALNS-RR | ||||||||||||
| Cost/CNY | Time/s | Cost/CNY | Time/s | Cost/CNY | Time/s | Cost/CNY | Time/s | Cost/CNY | Time/s | |||||||
| 2 | 13 | 3-3-60 | 131.34 | 0.47 | 131.34 | 0.85 | 131.21 | 4.11 | 131.21 | 44.93 | 131.21 | 42.36 | ||||
| 14 | 3-3-60 | 173.08 | 0.44 | 147.64 | 1.03 | 141.99 | 2.34 | 141.99 | 47.20 | 141.99 | 49.81 | |||||
| 15 | 3-3-60 | 145.53 | 1.81 | 145.53 | 0.75 | 144.58 | 144.58 | 47.58 | 144.58 | 46.48 | ||||||
| 16 | 3-3-60 | 160.14 | 0.50 | 160.14 | 1.19 | 160.08 | 160.08 | 53.14 | 160.08 | 55.81 | ||||||
| 17 | 3-3-60 | 154.26 | 0.63 | 152.90 | 1.15 | − | − | 152.87 | 54.88 | 152.87 | 52.26 | |||||
| 3 | 13 | 4-3-60 | 154.71 | 1.01 | 149.06 | 1.91 | 149.06 | 4.32 | 149.06 | 128.08 | 149.06 | 127.41 | ||||
| 14 | 4-3-60 | 156.76 | 1.89 | 156.76 | 2.13 | 156.74 | 15.95 | 156.74 | 136.70 | 156.74 | 158.78 | |||||
| 15 | 4-3-60 | 179.79 | 1.93 | 179.39 | 3.24 | 179.36 | 179.36 | 141.70 | 179.36 | 165.68 | ||||||
| 16 | 4-3-60 | 216.57 | 2.39 | 185.61 | 3.63 | 185.54 | 185.54 | 163.98 | 185.54 | 164.70 | ||||||
| 17 | 4-3-60 | 175.96 | 1.92 | 174.78 | 3.24 | − | − | 173.68 | 160.65 | 173.68 | 177.90 | |||||
Table 6
Results under the three policies with $ {{\boldsymbol{n}}}^{{\boldsymbol{-}}}{\boldsymbol{=}}{\boldsymbol{30}} $"
| WTB policy | ATB policy | ACB policy with SA-RR | ACB policy with ALNS-RR | ||||||||||||||
| Cost/CNY | Time/s | Cost/CNY | Time/s | Cost/CNY | Time/s | Cost/CNY | Time/s | ||||||||||
| 2-3 | 159.60 | 0.64 | 155.34 | 1.65 | 2.67 | 12.32 | 154.54 | 136.95 | 3.17 | 11.08 | 154.81 | 135.11 | 3.00 | 10.61 | |||
| 2-4 | 161.91 | 0.96 | 160.88 | 1.67 | 0.63 | 15.56 | 160.21 | 161.80 | 1.05 | 9.54 | 160.24 | 170.70 | 1.03 | 9.54 | |||
| 3-4 | 206.11 | 2.70 | 194.10 | 6.96 | 5.83 | 15.55 | 190.43 | 647.94 | 7.61 | 21.06 | 188.75 | 667.39 | 8.42 | 20.62 | |||
| 3-5 | 189.98 | 3.73 | 183.81 | 7.14 | 3.25 | 9.34 | 182.57 | 690.19 | 3.90 | 13.42 | 181.55 | 775.73 | 4.44 | 15.94 | |||
| 4-5 | 194.96 | 13.55 | 191.03 | 24.06 | 2.01 | 20.38 | 190.09 | 2.50 | 21.94 | 190.41 | 2.33 | 18.31 | |||||
| 4-6 | 205.99 | 9.23 | 194.77 | 28.36 | 5.44 | 20.65 | 194.40 | 5.62 | 22.36 | 194.37 | 5.64 | 24.83 | |||||
| 5-6 | 326.67 | 34.24 | 324.23 | 110.01 | 0.75 | 10.34 | 323.97 | 0.83 | 8.41 | 323.94 | 0.83 | 10.17 | |||||
| 5-7 | 336.29 | 23.19 | 329.83 | 69.66 | 1.92 | 14.91 | 326.06 | 3.04 | 12.51 | 326.22 | 2.99 | 13.40 | |||||
| 6-7 | 314.85 | 16.14 | 278.07 | 58.07 | 11.68 | 19.04 | 275.22 | 12.59 | 23.85 | 274.48 | 12.82 | 24.30 | |||||
| 6-8 | 313.40 | 15.05 | 273.97 | 45.96 | 12.58 | 18.87 | 271.37 | 13.41 | 20.51 | 271.69 | 13.31 | 20.31 | |||||
| Average | 240.97 | 11.94 | 228.60 | 35.35 | 5.13 | 15.98 | 226.88 | 5.85 | 16.94 | 226.65 | 5.95 | 17.31 | |||||
Table 7
Results under the three policies with $ {{\boldsymbol{n}}}^{{\boldsymbol{-}}}{\boldsymbol{=}}{\boldsymbol{50}} $"
| WTB policy | ATB policy | ACB policy with SA-RR | ACB policy with ALNS-RR | ||||||||||||||
| Cost/CNY | Time/s | Cost/CNY | Time/s | Cost/CNY | Time/s | Cost/CNY | Time/s | ||||||||||
| 2-4 | 175.84 | 1.12 | 175.18 | 5.51 | 0.38 | 5.21 | 174.78 | 176.40 | 0.60 | 3.93 | 174.74 | 204.85 | 0.63 | 4.41 | |||
| 2-5 | 196.50 | 1.24 | 194.92 | 5.68 | 0.81 | 4.76 | 193.98 | 193.82 | 1.28 | 4.67 | 194.01 | 203.81 | 1.27 | 4.55 | |||
| 3-4 | 214.05 | 7.28 | 211.20 | 119.32 | 1.33 | 12.08 | 208.18 | 750.47 | 2.74 | 13.95 | 208.61 | 846.62 | 2.54 | 13.11 | |||
| 3-5 | 221.64 | 6.65 | 220.49 | 34.78 | 0.52 | 15.94 | 219.55 | 848.27 | 0.94 | 16.26 | 219.07 | 889.56 | 1.16 | 15.96 | |||
| 4-5 | 241.44 | 32.60 | 240.31 | 265.27 | 0.47 | 7.03 | 238.98 | 1.02 | 5.88 | 239.18 | 0.94 | 8.19 | |||||
| 4-6 | 272.09 | 59.69 | 271.99 | 104.47 | 0.04 | 1.88 | 267.44 | 1.71 | 10.67 | 267.48 | 1.70 | 7.78 | |||||
| 5-6 | 279.63 | 74.91 | 278.72 | 153.87 | 0.33 | 5.45 | 272.43 | 2.58 | 9.87 | 272.66 | 2.50 | 9.68 | |||||
| 5-7 | 270.60 | 45.53 | 270.30 | 96.13 | 0.11 | 1.68 | 265.81 | 1.77 | 7.89 | 265.97 | 1.71 | 6.56 | |||||
| 6-7 | 326.51 | 191.88 | 326.41 | 319.70 | 0.03 | 1.60 | 323.88 | 0.81 | 6.05 | 324.19 | 0.71 | 5.79 | |||||
| 6-8 | 320.86 | 88.53 | 319.90 | 201.73 | 0.30 | 6.26 | 317.13 | 1.16 | 7.93 | 317.43 | 1.07 | 7.23 | |||||
| Average | 251.92 | 50.94 | 250.94 | 130.64 | 0.39 | 6.20 | 248.22 | 1.47 | 8.92 | 248.33 | 1.42 | 8.47 | |||||
Table 8
Results under the three policies with $ {{\boldsymbol{n}}}^{{\boldsymbol{-}}}{\boldsymbol{=}}{\boldsymbol{100}} $"
| WTB policy | ATB policy | ACB policy with SA-RR | ACB policy with ALNS-RR | ||||||||||||||
| Cost/CNY | Time/s | Cost/CNY | Time/s | Cost/CNY | Time/s | Cost/CNY | Time/s | ||||||||||
| 2-5 | 178.51 | 2.39 | 177.96 | 22.52 | 0.31 | 1.99 | 177.74 | 252.05 | 0.44 | 1.75 | 177.74 | 248.48 | 0.43 | 1.50 | |||
| 2-6 | 208.13 | 3.41 | 208.11 | 27.61 | 0.01 | 1.64 | 207.83 | 282.88 | 0.15 | 0.68 | 208.04 | 322.11 | 0.04 | 0.58 | |||
| 3-5 | 199.44 | 12.77 | 199.01 | 197.35 | 0.22 | 7.15 | 198.68 | 0.38 | 9.00 | 198.48 | 0.49 | 9.29 | |||||
| 3-6 | 222.93 | 18.70 | 222.85 | 118.14 | 0.03 | 6.48 | 222.51 | 0.19 | 6.25 | 222.58 | 0.16 | 5.13 | |||||
| 4-6 | 249.17 | 103.55 | 248.86 | 953.67 | 0.12 | 4.86 | 248.37 | 0.32 | 4.31 | 248.47 | 0.28 | 5.87 | |||||
| 4-7 | 267.57 | 191.24 | 267.43 | 562.37 | 0.05 | 1.56 | 265.91 | 0.62 | 4.23 | 265.49 | 0.78 | 5.48 | |||||
| 5-7 | 235.85 | 75.56 | 234.84 | 817.27 | 0.43 | 6.54 | 233.91 | 0.82 | 7.98 | 234.04 | 0.77 | 7.73 | |||||
| 5-8 | 258.06 | 69.58 | 258.04 | 493.20 | 0.01 | 2.40 | 256.96 | 0.43 | 4.55 | 256.88 | 0.46 | 3.79 | |||||
| 6-8 | 240.06 | 60.81 | 239.85 | 479.92 | 0.09 | 3.04 | 239.26 | 0.33 | 5.45 | 239.35 | 0.30 | 5.11 | |||||
| 6-9 | 264.34 | 111.80 | 263.95 | 641.41 | 0.15 | 1.95 | 263.21 | 0.43 | 4.34 | 263.44 | 0.34 | 4.63 | |||||
| Average | 232.41 | 64.98 | 232.09 | 431.34 | 0.14 | 3.82 | 231.44 | 0.42 | 5.00 | 231.45 | 0.41 | 5.04 | |||||
Table 9
Detailed trip and arrival time information of Fig. 3"
| Figure | Trip | Moment-Vehicle 1 | Moment-Vehicle 2 | Moment-Vehicle 3 |
| 1 | 8.30-8.90-9.70 | 8.30-9.60-11.10 | 8.30-9.10-9.61-9.87-11.05 | |
| 2 | 10.00-11.56-11.84-12.85-14.40 | 11.40-12.98-13.23-13.78-18.02 | 11.35-11.70-12.40-12.78-14.77 | |
| 3 | 14.70-15.38-15.93-17.21 | − | − | |
| 1 | 8.30-8.90-9.70 | 8.30-9.60-11.10 | 8.30-9.10-9.61-9.87-11.05 | |
| 2 | 10.00-11.56-11.84-12.85-14.40 | 11.40-12.98-13.23-13.78-18.02 | 11.35-11.70-12.40-12.78-14.77 | |
| 3 | 14.70-15.31-16.11 | − | 15.07-15.75-16.30-17.51 | |
| 1 | 8.30-8.90-9.70 | 8.30-9.60-11.10 | 8.30-9.10-9.61-9.87-11.05 | |
| 2 | 10.00-11.56-11.84-12.85-14.40 | 11.40-12.98-13.23-13.78-18.02 | 11.35-11.70-12.40-12.78-14.77 | |
| 3 | 14.70-15.31-16.11 | − | 15.07-16.37-17.88 | |
| 4 | 16.41-17.08-17.64-18.85 | − | − | |
| 1 | 8.30-8.90-9.70 | 8.30-9.60-11.10 | 8.30-9.10-9.61-9.87-11.05 | |
| 2 | 10.00-11.56-11.84-12.85-14.40 | 11.40-12.98-13.23-13.78-18.02 | 11.35-11.70-12.40-13.20 | |
| 3 | 14.70-15.38-16.15 | − | 13.50-14.10-14.90 | |
| 4 | − | − | 15.20-15.88-16.43-17.64 | |
| 1 | 8.30-8.90-9.70 | 8.30-9.60-11.10 | 8.30-9.10-9.61-9.87-11.05 | |
| 2 | 10.00-11.56-11.84-12.85-14.40 | 11.40-12.98-13.23-13.78-18.02 | 11.35-11.70-12.40-13.20 | |
| 3 | 14.70-16.01-17.51 | − | 13.50-14.10-14.90 | |
| 4 | 17.81-18.48-19.25 | − | 15.20-15.88-16.43-17.64 | |
| 1 | 8.30-8.90-9.70 | 8.30-9.60-11.10 | 8.30-9.10-9.61-9.87-11.05 | |
| 2 | 10.00-11.56-11.84-12.85-14.40 | 11.40-12.98-13.23-13.78-18.02 | 11.35-11.70-12.40-13.20 | |
| 3 | 14.70-15.38-16.25-16.80-17.57 | − | 13.50-14.10-14.90 | |
| 1 | 8.30-8.90-9.70 | 8.30-9.60-11.10 | 8.30-9.10-9.61-9.87-11.05 | |
| 2 | 10.00-11.56-11.84-12.85-14.40 | 11.40-12.98-13.23-13.78-18.02 | 11.35-11.70-12.40-13.20 | |
| 3 | 14.70-16.01-17.51 | − | 13.50-14.10-14.90 | |
| 4 | − | − | 15.20-15.88-16.74-17.30-18.07 |
Table 10
Costs under the three recourse policies for a single scenario"
| Policy | Vehicle | Cost related to trips/CNY | Overtime cost/ CNY | Total cost/ CNY | ||
| Period 0 | Period 3 | Period 4 | ||||
| WTB | 1 | 1: 8.81 7-3-10: 24.66 | − | 1: 61.04 13-15: 14.05 | 5.08 | 205.76 |
| 2 | 2: 14.41 12-11-16: 20.40 | − | − | 0.14 | ||
| 3 | 4-8-6: 13.81 9-5-14: 14.00 | − | 2: 29.36 | − | ||
| ATB | 1 | 1: 8.81 | − | 7-3-10: 24.66 2: 14.68 14: 11.86 | 7.51 | 155.18 |
| 2 | 2: 14.41 | − | 12-11-16: 20.40 | 0.14 | ||
| 3 | 4-8-6: 13.81 | 9-5: 13.00 | 1: 12.94 13-15: 12.96 | − | ||
| ACB | 1 | 1: 8.81 | − | 7-3-10: 24.66 2: 14.68 | − | 138.86 |
| 2 | 2: 14.41 | − | 12-11-16: 20.40 | 0.14 | ||
| 3 | 4-8-6: 13.81 | 9-5: 13.00 | 1: 12.94 14-15-13: 15.57 | 0.44 | ||
Table 11
Results for different CC priorities relative to ICs"
| ATB policy/% | ACB policy/% | ||||||||||||
| 10 | −0.35 | −0.47 | 13.85 | 0.72 | 2.96 | 0.25 | −0.34 | −0.52 | 16.89 | 3.75 | 7.83 | 0.72 | |
| 20 | −0.66 | −0.82 | 23.51 | 1.29 | 7.98 | 0.85 | −0.57 | −0.76 | 27.01 | 3.27 | 9.04 | 1.47 | |
| 30 | −0.95 | −1.10 | 29.71 | 1.55 | 7.94 | 1.55 | −0.76 | −0.99 | 32.00 | 3.41 | 11.84 | 2.22 | |
| 40 | −1.17 | −1.33 | 37.64 | −4.86 | 2.37 | 2.34 | −0.91 | −1.23 | 39.81 | −2.76 | 9.90 | 3.20 | |
| 50 | −1.55 | −1.70 | 43.07 | −7.77 | −4.12 | 3.19 | −1.05 | −1.37 | 43.13 | −2.43 | 8.59 | 4.14 | |
| 60 | −1.78 | −1.90 | 44.73 | −10.39 | −9.99 | 4.04 | −1.05 | −1.37 | 43.73 | −3.08 | 8.08 | 5.08 | |
| 70 | −1.88 | −1.90 | 45.48 | −12.43 | −12.59 | 4.95 | −0.95 | −1.31 | 43.75 | −2.62 | 9.05 | 5.94 | |
| 80 | −2.20 | −2.35 | 49.04 | −17.84 | −17.00 | 5.78 | −1.20 | −1.76 | 46.58 | −8.25 | 5.08 | 6.61 | |
| 90 | −2.35 | −2.55 | 49.68 | −17.52 | −15.99 | 6.78 | −1.42 | −1.99 | 48.35 | −7.51 | 5.93 | 7.73 | |
| 100 | −2.55 | −2.94 | 51.35 | −20.59 | −17.59 | 7.57 | −1.39 | −2.33 | 48.77 | −10.55 | 6.35 | 8.38 | |
| Average | −1.54 | −1.71 | 38.81 | −8.79 | −5.60 | 3.73 | −0.96 | −1.36 | 39.00 | −2.68 | 8.17 | 4.55 | |
Table 12
Results for different time interval widths"
| Group | FR | WTB policy | ATB policy | ACB policy | ||||||||
| Cost/CNY | Cost/CNY | Cost/CNY | Cost/CNY | |||||||||
| W1 | 2 | 114.51 | 158.19 | 157.76 | 0.27 | 2.67 | 156.77 | 0.90 | 6.08 | |||
| 3 | 147.22 | 255.34 | 232.59 | 8.91 | 16.96 | 224.22 | 12.19 | 30.63 | ||||
| 4 | 150.52 | 219.97 | 209.27 | 4.86 | 20.66 | 207.38 | 5.72 | 20.66 | ||||
| 5 | 211.62 | 324.13 | 323.68 | 0.14 | 8.23 | 323.36 | 0.24 | 10.38 | ||||
| 6 | 183.71 | 228.81 | 227.18 | 0.71 | 12.26 | 227.11 | 0.74 | 12.26 | ||||
| Average | 161.52 | 237.29 | 230.10 | 2.98 | 12.15 | 227.77 | 3.96 | 16.00 | ||||
| W2 | 2 | 132.35 | 189.97 | 189.22 | 0.39 | 4.06 | 188.73 | 0.65 | 4.89 | |||
| 3 | 161.40 | 224.57 | 223.71 | 0.38 | 8.48 | 223.15 | 0.63 | 10.56 | ||||
| 4 | 184.39 | 384.74 | 337.26 | 12.34 | 18.15 | 334.68 | 13.01 | 19.09 | ||||
| 5 | 280.61 | 742.00 | 632.14 | 14.81 | 22.80 | 630.15 | 15.07 | 23.55 | ||||
| 6 | 204.90 | 399.64 | 399.64 | 0.00 | 0.00 | 399.62 | 0.01 | 0.01 | ||||
| Average | 192.73 | 388.18 | 356.39 | 5.58 | 10.70 | 355.27 | 5.88 | 11.62 | ||||
| W3 | 2 | 114.51 | 133.40 | 133.40 | 0.00 | 0.00 | 132.98 | 0.31 | 0.45 | |||
| 3 | 146.19 | 166.85 | 166.85 | 0.00 | 0.09 | 166.84 | 0.01 | 0.09 | ||||
| 4 | 149.41 | 186.25 | 186.14 | 0.06 | 1.57 | 185.20 | 0.56 | 11.37 | ||||
| 5 | 210.53 | 269.94 | 269.94 | 0.00 | 0.00 | 269.85 | 0.03 | 0.17 | ||||
| 6 | 183.68 | 221.47 | 221.47 | 0.00 | 0.05 | 221.44 | 0.01 | 4.72 | ||||
| Average | 160.86 | 195.58 | 195.56 | 0.01 | 0.34 | 195.26 | 0.19 | 3.36 | ||||
Table 13
Results for different vehicle capacities"
| FR | WTB policy | ATB policy | ACB policy | |||||||||
| Cost/CNY | Cost/CNY | Cost/CNY | Cost/CNY | |||||||||
| 2-3 | 3 | 138.18 | 180.26 | 180.26 | 0.00 | 0.00 | 168.25 | 6.66 | 15.22 | |||
| 4 | 84.26 | 158.19 | 157.76 | 0.27 | 2.67 | 156.77 | 0.90 | 6.08 | ||||
| 5 | 97.03 | 128.18 | 126.63 | 1.21 | 11.92 | 126.41 | 1.38 | 12.70 | ||||
| 6 | 87.06 | 162.01 | 136.40 | 15.81 | 41.55 | 137.66 | 15.03 | 41.09 | ||||
| 7 | 84.26 | 120.21 | 113.12 | 5.90 | 30.79 | 112.78 | 6.18 | 31.14 | ||||
| Average | 98.16 | 149.77 | 142.83 | 4.64 | 17.39 | 140.37 | 6.03 | 21.24 | ||||
| 2-4 | 3 | 131.28 | 161.25 | 157.26 | 2.47 | 26.36 | 156.98 | 2.65 | 27.56 | |||
| 4 | 111.31 | 155.19 | 143.99 | 7.22 | 31.73 | 139.97 | 9.81 | 33.60 | ||||
| 5 | 95.01 | 137.68 | 129.47 | 5.96 | 29.96 | 130.66 | 5.10 | 29.98 | ||||
| 6 | 86.00 | 138.21 | 130.50 | 5.58 | 33.55 | 131.85 | 4.60 | 33.82 | ||||
| 7 | 82.14 | 102.71 | 101.84 | 0.85 | 9.26 | 101.59 | 1.09 | 11.76 | ||||
| Average | 101.15 | 139.01 | 132.61 | 4.42 | 26.17 | 132.21 | 4.65 | 27.34 | ||||
| 3-4 | 3 | 147.22 | 255.34 | 232.59 | 8.91 | 16.96 | 213.51 | 16.38 | 30.47 | |||
| 4 | 122.71 | 158.33 | 154.56 | 2.38 | 12.26 | 154.23 | 2.59 | 13.23 | ||||
| 5 | 107.50 | 208.15 | 160.80 | 22.75 | 37.74 | 163.56 | 21.42 | 40.89 | ||||
| 6 | 98.32 | 162.52 | 142.37 | 12.40 | 22.83 | 143.75 | 11.55 | 22.83 | ||||
| 7 | 93.35 | 297.41 | 157.46 | 47.06 | 69.64 | 160.16 | 46.15 | 70.85 | ||||
| Average | 113.82 | 216.35 | 169.56 | 18.70 | 31.89 | 167.04 | 19.62 | 35.66 | ||||
| 3-5 | 3 | 144.49 | 182.02 | 181.57 | 0.25 | 1.31 | 181.30 | 0.40 | 3.38 | |||
| 4 | 120.65 | 152.87 | 151.58 | 0.84 | 24.58 | 151.44 | 0.94 | 28.02 | ||||
| 5 | 105.32 | 168.10 | 153.40 | 8.74 | 27.86 | 153.40 | 8.74 | 27.93 | ||||
| 6 | 96.10 | 143.18 | 128.04 | 10.57 | 33.68 | 131.25 | 8.33 | 33.68 | ||||
| 7 | 93.19 | 229.53 | 150.75 | 34.32 | 56.69 | 150.82 | 34.29 | 57.86 | ||||
| Average | 111.95 | 175.14 | 153.07 | 10.95 | 28.82 | 153.64 | 10.54 | 30.17 | ||||
| 63 |
CHANG Z X, ZHOU Z B, YAO F, et al Observation scheduling problem for AEOS with a comprehensive task clustering. Journal of Systems Engineering and Electronics, 2021, 32 (2): 347- 364.
doi: 10.23919/JSEE.2021.000029 |
| 64 |
SHI J M, ZHANG J M, LEI H T, et al Joint mission and route planning of unmanned air vehicles via a learning-based heuristic. Journal of Systems Engineering and Electronics, 2023, 34 (1): 81- 98.
doi: 10.23919/JSEE.2023.000005 |
| 65 | BUSTOS-CORAL D, COSTA A M Adaptive large neighborhood search for drayage routing problems involving longer combination vehicles. Computers & Operations Research, 2025, 173, 106826. |
| 66 |
VOIGT S A review and ranking of operators in adaptive large neighborhood search for vehicle routing problems. European Journal of Operational Research, 2025, 322 (2): 357- 375.
doi: 10.1016/j.ejor.2024.05.033 |
| 67 |
MASSON R, LEHUEDE F, PETON O An adaptive large neighborhood search for the pickup and delivery problem with transfers. Transportation Science, 2013, 47 (3): 344- 355.
doi: 10.1287/trsc.1120.0432 |
| 1 | LI F, XU Z, CHEN Z L Production and transportation integration for commit-to-delivery mode with general shipping costs. INFORMS Journal on Computing, 2020, 32 (4): 1012- 1029. |
| 2 |
YILDIZ B Package routing problem with registered couriers and stochastic demand. Transportation Research Part E: Logistics and Transportation Review, 2021, 147, 102248.
doi: 10.1016/j.tre.2021.102248 |
| 3 |
SILVA D F, VINEL A, KIRKICI B On-demand public transit: a markovian continuous approximation model. Transportation Science, 2022, 56 (3): 704- 724.
doi: 10.1287/trsc.2021.1063 |
| 4 |
BEIRIGO B A, SCHULTE F, NEGENBORN R R A learning-based optimization approach for autonomous ridesharing platforms with service-level contracts and on-demand hiring of idle vehicles. Transportation Science, 2022, 56 (3): 677- 703.
doi: 10.1287/trsc.2021.1069 |
| 5 |
ZHANG J, LUO K, FLORIO A M, et al Solving large-scale dynamic vehicle routing problems with stochastic requests. European Journal of Operational Research, 2023, 306 (2): 596- 614.
doi: 10.1016/j.ejor.2022.07.015 |
| 6 |
ZIGRAND L, CALVO R W, TRAVERSI E, et al A scalable combinatorial benders decomposition for the stochastic dial-a-ride problem. Transportation Research Part C: Emerging Technologies, 2024, 163, 104624.
doi: 10.1016/j.trc.2024.104624 |
| 7 |
BERTSIMAS D J, JAILLET P, ODONI A R A priori optimization. Operations Research, 1990, 38 (6): 1019- 1033.
doi: 10.1287/opre.38.6.1019 |
| 8 |
GOODSON J C A priori policy evaluation and cyclic-order-based simulated annealing for the multi-compartment vehicle routing problem with stochastic demands. European Journal of Operational Research, 2015, 241 (2): 361- 369.
doi: 10.1016/j.ejor.2014.09.031 |
| 9 |
HAUGHTON M A Assigning delivery routes to drivers under variable customer demands. Transportation Research Part E: Logistics and Transportation Review, 2007, 43 (2): 157- 172.
doi: 10.1016/j.tre.2005.09.009 |
| 10 |
SECOMANDI N, MARGOT F Reoptimization approaches for the vehicle-routing problem with stochastic demands. Operations Research, 2009, 57 (1): 214- 230.
doi: 10.1287/opre.1080.0520 |
| 11 |
ZHANG J, LAM W H K, CHEN B Y On-time delivery probabilistic models for the vehicle routing problem with stochastic demands and time windows. European Journal of Operational Research, 2016, 249 (1): 144- 154.
doi: 10.1016/j.ejor.2015.08.050 |
| 12 |
LOUVEAUX F V, SALAZAR-GONZALEZ J J Exact approach for the vehicle routing problem with stochastic demands and preventive returns. Transportation Science, 2018, 52 (6): 1463- 1478.
doi: 10.1287/trsc.2017.0780 |
| 13 |
FLORIO A M, HARTL R F, MINNER S, et al A branch-and-price algorithm for the vehicle routing problem with stochastic demands and probabilistic duration constraints. Transportation Science, 2021, 55 (1): 122- 138.
doi: 10.1287/trsc.2020.1002 |
| 14 |
FLORIO A M, FEILLET D, POGGI M, et al Vehicle routing with stochastic demands and partial reoptimization. Transportation Science, 2022, 56 (5): 1393- 1408.
doi: 10.1287/trsc.2022.1129 |
| 15 |
WANG F L, LI H Q, XIONG H X Truck-drone routing problem with stochastic demand. European Journal of Operational Research, 2025, 322 (3): 854- 869.
doi: 10.1016/j.ejor.2024.11.036 |
| 16 |
HVATTUM L M, LØKKETANGEN A, LAPORTE G Solving a dynamic and stochastic vehicle routing problem with a sample scenario hedging heuristic. Transportation Science, 2006, 40 (4): 421- 438.
doi: 10.1287/trsc.1060.0166 |
| 17 |
GU R X, LIU Y, POON M Dynamic truck-drone routing problem for scheduled deliveries and on-demand pickups with time-related constraints. Transportation Research Part C: Emerging Technologies, 2023, 151, 104139.
doi: 10.1016/j.trc.2023.104139 |
| 18 |
YAN S, LIN J R, LAI C W The planning and real-time adjustment of courier routing and scheduling under stochastic travel times and demands. Transportation Research Part E: Logistics and Transportation Review, 2013, 53, 34- 48.
doi: 10.1016/j.tre.2013.01.011 |
| 19 |
ULMER M W, GOODSON J C, MATTFELD D C, et al Offline–online approximate dynamic programming for dynamic vehicle routing with stochastic requests. Transportation Science, 2019, 53 (1): 185- 202.
doi: 10.1287/trsc.2017.0767 |
| 20 |
LEI L, LIU S, RUSZCZYNSKI A, et al On the integrated production, inventory, and distribution routing problem. IIE Transactions, 2006, 38 (11): 955- 970.
doi: 10.1080/07408170600862688 |
| 21 |
LEE J, KIM B I, JOHNSON A L, et al The nuclear medicine production and delivery problem. European Journal of Operational Research, 2014, 236 (2): 461- 472.
doi: 10.1016/j.ejor.2013.12.024 |
| 22 |
JUAN A, FAULIN J, GRASMAN S, et al Using safety stocks and simulation to solve the vehicle routing problem with stochastic demands. Transportation Research Part C: Emerging Technologies, 2011, 19 (5): 751- 765.
doi: 10.1016/j.trc.2010.09.007 |
| 23 |
GOODSON J C, OHLMANN J W, THOMAS B W Rollout policies for dynamic solutions to the multivehicle routing problem with stochastic demand and duration limits. Operations Research, 2013, 61 (1): 138- 154.
doi: 10.1287/opre.1120.1127 |
| 24 |
ABDULLAHI H, REYES-RUBIANO L, OUELHADJ D, et al A reliability-extended simheuristic for the sustainable vehicle routing problem with stochastic travel times and demands. Journal of Heuristics, 2025, 31 (2): 19.
doi: 10.1007/s10732-025-09555-4 |
| 25 |
SALAVATI-KHOSHGHALB M, GENDREAU M, JABALI O, et al An exact algorithm to solve the vehicle routing problem with stochastic demands under an optimal restocking policy. European Journal of Operational Research, 2019, 273 (1): 175- 189.
doi: 10.1016/j.ejor.2018.07.039 |
| 26 |
FLORIO A M, HARTL R F, MINNER S New exact algorithm for the vehicle routing problem with stochastic demands. Transportation Science, 2020, 54 (4): 1073- 1090.
doi: 10.1287/trsc.2020.0976 |
| 27 |
CACERES H, BATTA R, HE Q School bus routing with stochastic demand and duration constraints. Transportation Science, 2017, 51 (4): 1349- 1364.
doi: 10.1287/trsc.2016.0721 |
| 28 |
ALKAABNEH F, SHEHADEH K S, DIABAT A Routing and resource allocation in non-profit settings with equity and efficiency measures under demand uncertainty. Transportation Research Part C: Emerging Technologies, 2023, 149, 104023.
doi: 10.1016/j.trc.2023.104023 |
| 29 |
MUNARI P, MORENO A, VEGA J D L, et al The robust vehicle routing problem with time windows: compact formulation and branch-price-and-cut method. Transportation Science, 2019, 53 (4): 1043- 1066.
doi: 10.1287/trsc.2018.0886 |
| 30 |
LI M, LEE E, LO H K Offline planning and online operation of zonal-based flexible transit service under demand uncertainties and dynamic cancellations. Transportation Research Part C: Emerging Technologies, 2024, 168, 104715.
doi: 10.1016/j.trc.2024.104715 |
| 31 |
PAPADIMITRIOU C H The Euclidean travelling salesman problem is NP-complete. Theoretical Computer Science, 1977, 4 (3): 237- 244.
doi: 10.1016/0304-3975(77)90012-3 |
| 32 | JUNGER M, LIEBLING T M, NADDEF D, et al. 50 years of integer programming 1958-2008. Berlin: Springer, 2010. |
| 33 |
REUSKEN M, LAPORTE G, ROHMER S U K, et al Vehicle routing with stochastic demand, service and waiting times—the case of food bank collection problems. European Journal of Operational Research, 2024, 317 (1): 111- 127.
doi: 10.1016/j.ejor.2024.03.031 |
| 34 |
SECOMANDI N A rollout policy for the vehicle routing problem with stochastic demands. Operations Research, 2001, 49 (5): 796- 802.
doi: 10.1287/opre.49.5.796.10608 |
| 35 |
LAPORTE G, LOUVEAUX F V, HAMME V L An integer L-shaped algorithm for the capacitated vehicle routing problem with stochastic demands. Operations Research, 2002, 50 (3): 415- 423.
doi: 10.1287/opre.50.3.415.7751 |
| 36 |
FLORIO A M, GENDREAU M, HARTL R F, et al Recent advances in vehicle routing with stochastic demands: Bayesian learning for correlated demands and elementary branch-price-and-cut. European Journal of Operational Research, 2023, 306 (3): 1081- 1093.
doi: 10.1016/j.ejor.2022.10.045 |
| 37 |
SALAVATI-KHOSHGHALB M, GENDREAU M, JABALI O, et al A rule-based recourse for the vehicle routing problem with stochastic demands. Transportation Science, 2019, 53 (5): 1334- 1353.
doi: 10.1287/trsc.2018.0876 |
| 38 |
VEGA J D L, GENDREAU M, MORABITO R, et al An integer L-shaped algorithm for the vehicle routing problem with time windows and stochastic demands. European Journal of Operational Research, 2023, 308 (2): 676- 695.
doi: 10.1016/j.ejor.2022.11.040 |
| 39 | CHE Y X, ZHANG Z Z An integer L-shaped algorithm for vehicle routing problem with simultaneous delivery and stochastic pickup. Computers & Operations Research, 2023, 154, 106201. |
| 40 |
HOOGENDOORN Y N, SPLIET R An evaluation of common modeling choices for the vehicle routing problem with stochastic demands. European Journal of Operational Research, 2025, 321 (1): 107- 122.
doi: 10.1016/j.ejor.2024.09.007 |
| 41 |
LI R, CUI Z, KUO Y H, et al Scenario-based distributionally robust optimization for the stochastic inventory routing problem. Transportation Research Part E: Logistics and Transportation Review, 2023, 176, 103193.
doi: 10.1016/j.tre.2023.103193 |
| 42 |
GOODSON J C, OHLMANN J W, THOMAS B W Cyclic-order neighborhoods with application to the vehicle routing problem with stochastic demand. European Journal of Operational Research, 2012, 217 (2): 312- 323.
doi: 10.1016/j.ejor.2011.09.023 |
| 43 |
HUANG S H, LIN P C A modified ant colony optimization algorithm for multi-item inventory routing problems with demand uncertainty. Transportation Research Part E: Logistics and Transportation Review, 2010, 46 (5): 598- 611.
doi: 10.1016/j.tre.2010.01.006 |
| 44 |
ZHONG S, CHENG R, JIANG Y, et al Risk-averse optimization of disaster relief facility location and vehicle routing under stochastic demand. Transportation Research Part E: Logistics and Transportation Review, 2020, 141, 102015.
doi: 10.1016/j.tre.2020.102015 |
| 45 |
LUO Z, QIN H, ZHANG D, et al Adaptive large neighborhood search heuristics for the vehicle routing problem with stochastic demands and weight-related cost. Transportation Research Part E: Logistics and Transportation Review, 2016, 85, 69- 89.
doi: 10.1016/j.tre.2015.11.004 |
| 46 |
YU V F, ANH P T, BALDACCI R A robust optimization approach for the vehicle routing problem with cross-docking under demand uncertainty. Transportation Research Part E: Logistics and Transportation Review, 2023, 173, 103106.
doi: 10.1016/j.tre.2023.103106 |
| 47 |
LIU Y J, ZHANG T, LEI H T, et al Stochastic programming approach for earthquake disaster relief mobilization with multiple objectives. Journal of Systems Engineering and Electronics, 2013, 24 (4): 642- 654.
doi: 10.1109/JSEE.2013.00075 |
| 48 |
ALVAREZ A, CORDEAU J F, JANS R The consistent vehicle routing problem with stochastic customers and demands. Transportation Research Part B: Methodological, 2024, 186, 102968.
doi: 10.1016/j.trb.2024.102968 |
| 49 |
ARSLAN A M, AGATZ N, KROON L, et al Crowdsourced delivery—a dynamic pickup and delivery problem with ad hoc drivers. Transportation Science, 2019, 53 (1): 222- 235.
doi: 10.1287/trsc.2017.0803 |
| 50 |
AL-E-HASHEM S M J M, REKIK Y, HOSEINHAJLOU E M A hybrid L-shaped method to solve a bi-objective stochastic transshipment-enabled inventory routing problem. International Journal of Production Economics, 2019, 209, 381- 398.
doi: 10.1016/j.ijpe.2017.06.020 |
| 51 |
NEVES-MOREIRA F, ALMADA-LOBO B, GUIMARAES L, et al The multi-product inventory-routing problem with pickups and deliveries: mitigating fluctuating demand via rolling horizon heuristics. Transportation Research Part E: Logistics and Transportation Review, 2022, 164, 102791.
doi: 10.1016/j.tre.2022.102791 |
| 52 |
MA W J, ZENG L, AN K Dynamic vehicle routing problem for flexible buses considering stochastic requests. Transportation Research Part C: Emerging Technologies, 2023, 148, 104030.
doi: 10.1016/j.trc.2023.104030 |
| 53 |
MENDOZA J E, CASTANIER B, GUERET C, et al Constructive heuristics for the multicompartment vehicle routing problem with stochastic demands. Transportation Science, 2011, 45 (3): 346- 363.
doi: 10.1287/trsc.1100.0353 |
| 54 | ORTEGA E J A, MALICKI S, DOERNER K F, et al Stochastic inventory routing with dynamic demands and intra-day depletion. Computers & Operations Research, 2024, 163, 106503. |
| 55 |
KIRKPATRICK S, GELATT C D, VECCHI M P Optimization by simulated annealing. Science, 1983, 220 (4598): 671- 680.
doi: 10.1126/science.220.4598.671 |
| 56 |
WEI L, ZHANG Z, ZHANG D, et al A simulated annealing algorithm for the capacitated vehicle routing problem with two-dimensional loading constraints. European Journal of Operational Research, 2018, 265 (3): 843- 859.
doi: 10.1016/j.ejor.2017.08.035 |
| 57 |
ZHOU T R, XIONQ H G, ZHANG Z Hierarchical resource allocation for integrated modular avionics systems. Journal of Systems Engineering and Electronics, 2011, 22 (5): 780- 787.
doi: 10.3969/j.issn.1004-4132.2011.05.009 |
| 58 |
WANG C G, TANG J, CHENG X H, et al Distributed cooperative task planning algorithm for multiple satellites in delayed communication environment. Journal of Systems Engineering and Electronics, 2016, 27 (3): 619- 633.
doi: 10.1109/JSEE.2016.00066 |
| 59 |
ROPKE S, PISINGER D An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows. Transportation Science, 2006, 40 (4): 455- 472.
doi: 10.1287/trsc.1050.0135 |
| 60 | WEI C G, WØHLK S, CHE A A multi-level capacitated arc routing problem with intermediate facilities in waste collection. Computers & Operations Research, 2024, 167, 106671. |
| 61 |
GUO J F, SONG R, HE S W Vehicle and onboard UAV collaborative delivery route planning: considering energy function with wind and payload. Journal of Systems Engineering and Electronics, 2025, 36 (1): 194- 208.
doi: 10.23919/JSEE.2025.000020 |
| 62 | GUIMARAES T A, COELHO L C, SCHENEKEMBERG C M, et al The two-echelon multi-depot inventory-routing problem. Computers & Operations Research, 2019, 101, 220- 233. |
| No related articles found! |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||