
Journal of Systems Engineering and Electronics ›› 2021, Vol. 32 ›› Issue (4): 748-755.doi: 10.23919/JSEE.2021.000064
• SENSOR ARRAY SIGNAL PROCESSING AND ITS APPLICATIONS IN 5G/6G • Previous Articles Next Articles
					
													Junpeng SHI1,2(
), Fangqing WEN3,*(
), Yongxiang LIU1(
), Tianpeng LIU1(
), Zhen LIU1(
)
												  
						
						
						
					
				
Received:2021-01-28
															
							
															
							
															
							
																	Online:2021-08-18
															
							
																	Published:2021-09-30
															
						Contact:
								Fangqing WEN   
																	E-mail:15667081720@163.com;wenfangqing@yangt2eu.edu.cn;lyx_bible@Sina.com;everliutianpeng@Sina.com;linzhen200216@163.com
																					About author:Supported by:Junpeng SHI, Fangqing WEN, Yongxiang LIU, Tianpeng LIU, Zhen LIU. High-order extended coprime array design for direction of arrival estimation[J]. Journal of Systems Engineering and Electronics, 2021, 32(4): 748-755.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
| 1 |  
											KRIM H, VIBERG M Two decades of array signal processing research: the parametric approach. IEEE Signal Processing Magazine, 1996, 13 (4): 67- 94. 
																							 doi: 10.1109/79.526899  | 
										
| 2 | VAN TREES H L. Optimum array processing, Part IV of detection, estimation, and modulation theory. New York: Wiley, 2002. | 
| 3 |  
											SCHMIDT R O Multiple emitter location and signal parameter estimation. IEEE Trans. on Antennas and Propagation, 1986, 34 (3): 276- 280. 
																							 doi: 10.1109/TAP.1986.1143830  | 
										
| 4 |  
											ROY R, KAILATH T ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Trans. on Acoustics Speech and Signal Processing, 1989, 37 (7): 984- 995. 
																							 doi: 10.1109/29.32276  | 
										
| 5 |  
											ISHIGURO M Minimum redundancy linear arrays for a large number of antennas. Radio Science, 1980, 15 (6): 1163- 1170. 
																							 doi: 10.1029/RS015i006p01163  | 
										
| 6 | PAL P, VAIDYANATHAN P P Nested arrays: a novel approach to array processing with enhanced degrees of freedom. IEEE Trans. on Signal Processing, 2020, 58 (8): 4167- 4181. | 
| 7 | ZHAO P J, HU G B, QU Z Y, et al Enhanced nested array configuration with hole-free co-array and increasing degrees of freedom for DOA estimation. IEEE Communications Letters, 2018, 23 (12): 2224- 2227. | 
| 8 |  
											VAIDYANATHAN P P, PAL P Sparse sensing with co-prime samplers and arrays. IEEE Trans. on Signal Processing, 2011, 59 (2): 573- 586. 
																							 doi: 10.1109/TSP.2010.2089682  | 
										
| 9 |  
											SHI J P, HU G B, ZHANG X F, et al Sparsity-based two-dimensional DOA estimation for coprime array: from sum-difference coarray viewpoint. IEEE Trans. on Signal Processing, 2017, 65 (21): 5591- 5604. 
																							 doi: 10.1109/TSP.2017.2739105  | 
										
| 10 |  
											ZHOU C W, GU Y J, FAN X Direction-of-arrival estimation for coprime array via virtual array interpolation. IEEE Trans. on Signal Processing, 2018, 66 (22): 5956- 5971. 
																							 doi: 10.1109/TSP.2018.2872012  | 
										
| 11 |  
											LIU C L, VAIDYANATHAN P P Super nested arrays: linear sparse arrays with reduced mutual coupling—Part I: fundamentals. IEEE Trans. on Signal Processing, 2016, 64 (15): 3997- 4012. 
																							 doi: 10.1109/TSP.2016.2558159  | 
										
| 12 |  
											LIU C L, VAIDYANATHAN P P Super nested arrays: linear sparse arrays with reduced mutual coupling—Part II: high-order extensions. IEEE Trans. on Signal Processing, 2016, 64 (16): 4203- 4217. 
																							 doi: 10.1109/TSP.2016.2558167  | 
										
| 13 |  
											LIU J Y, ZHANG Y M, LU Y L, et al Augmented nested arrays with enhanced DOF and reduced mutual coupling. IEEE Trans. on Signal Processing, 2017, 65 (21): 5549- 5563. 
																							 doi: 10.1109/TSP.2017.2736493  | 
										
| 14 |  
											ZHENG Z, WANG W Q, KONG Y, et al MISC array: a new sparse array design achieving increased degrees of freedom and reduced mutual coupling effect. IEEE Trans. on Signal Processing, 2019, 67 (7): 1728- 1741. 
																							 doi: 10.1109/TSP.2019.2897954  | 
										
| 15 |  
											QIN S, ZHANG Y D, AMIN M G Generalized coprime array configurations for direction-of-arrival estimation. IEEE Trans. on Signal Processing, 2015, 63 (6): 1377- 1390. 
																							 doi: 10.1109/TSP.2015.2393838  | 
										
| 16 |  
											SHI J P, HU G B, ZHANG X F Generalized nested array: optimization for degrees of freedom and mutual coupling. IEEE Communications Letters, 2018, 22 (6): 1208- 1211. 
																							 doi: 10.1109/LCOMM.2018.2821672  | 
										
| 17 |  
											LIU C L, VAIDYANATHAN P P Remarks on the spatial smoothing step in coarray MUSIC. IEEE Signal Processing Letters, 2015, 22 (9): 1438- 1442. 
																							 doi: 10.1109/LSP.2015.2409153  | 
										
| 18 |  
											WANG X M, WANG X Hole identification and filling in k-times extended co-prime arrays for highly-efficient DOA estimation. IEEE Trans. on Signal Processing, 2019, 67 (10): 2693- 2706. 
																							 doi: 10.1109/TSP.2019.2899292  | 
										
| 19 |  
											RAZA A, LIU W, SHEN Q Thinned coprime array for second-order difference co-array generation with reduced mutual coupling. IEEE Trans. on Signal Processing, 2019, 67 (8): 2052- 2065. 
																							 doi: 10.1109/TSP.2019.2901380  | 
										
| 20 |  
											ZHENG W, ZHANG X F, WANG Y F, et al Extended coprime array configuration generating large-scale antenna co-array in massive MIMO system. IEEE Trans. on Vehicular Technology, 2019, 68 (8): 7841- 7853. 
																							 doi: 10.1109/TVT.2019.2925528  | 
										
| 21 |  
											ZHENG W, ZHANG X F, WANG Y F, et al Padded coprime arrays for improved DOA estimation: exploiting hole representation and filling strategies. IEEE Trans. on Signal Processing, 2020, 68, 4597- 4611. 
																							 doi: 10.1109/TSP.2020.3013389  | 
										
| 22 |  
											WANG Y F, ZHENG W, ZHANG X F, et al Expanded coprime array for DOA estimation: augmented consecutive co-array and reduced mutual coupling. Multidimensional System and Signal Processing, 2020, 31 (7): 907- 926. 
																							 doi: 10.1007/s11045-019-00690-3  | 
										
| 23 |  
											MA P H, LI J F, XU F, et al Hole-free coprime array for DOA estimation: augmented uniform co-array. IEEE Signal Processing Letters, 2021, 28, 36- 40. 
																							 doi: 10.1109/LSP.2020.3044019  | 
										
| 24 |  
											ZHANG H W, LIU W J, ZHANG Z J, et al Joint target assignment and power allocation in multiple distributed MIMO radar networks. IEEE Systems Journal, 2021, 15 (1): 694- 704. 
																							 doi: 10.1109/JSYST.2020.2986020  | 
										
| 25 |  
											WEN F Q, SHI J M, ZHANG Z J Joint 2D-DOD, 2D-DOA, and polarization angles estimation for bistatic EMVS-MIMO radar via PARAFAC analysis. IEEE Trans. on Vehicular Technology, 2020, 69 (2): 1626- 1638. 
																							 doi: 10.1109/TVT.2019.2957511  | 
										
| 26 |  
											SHI J P, HU G B, ZHOU H Entropy-based multipath detection model for MIMO radar. Journal of Systems Engineering and Electronics, 2017, 28 (1): 51- 57. 
																							 doi: 10.21629/JSEE.2017.01.07  | 
										
| 27 |  
											TANG B, LIU J, WANG H, et al Constrained radar waveform design for range profiling. IEEE Trans. on Signal Processing, 2021, 69, 1924- 1937. 
																							 doi: 10.1109/TSP.2021.3065830  | 
										
| 28 |  
											SHI J P, HU G B, ZHANG X F Generalized co-prime MIMO radars for DOA estimation with enhanced degrees of freedom. IEEE Sensors Journal, 2018, 18 (3): 1203- 1212. 
																							 doi: 10.1109/JSEN.2017.2782746  | 
										
| 29 |  
											SHI J P, HU G B, ZHANG X F, et al Sparsity-based DOA estimation of coherent and uncorrelated targets with flexible MIMO radar. IEEE Trans. on Vehicular Technology, 2019, 68 (6): 5835- 5848. 
																							 doi: 10.1109/TVT.2019.2913437  | 
										
| 30 | SHI J P, WEN F Q, LIU T P, et al Nested MIMO radar: coarrays, tensor modeling and angle estimation. IEEE Trans. on Aerospace and Electronic Systems, 2021, 57 (1): 573- 585. | 
| 31 |  
											YANG Z, STOICA P, TANG J H Source resolvability of spatial-smoothing-based subspace methods: a hadamard product perspective. IEEE Trans. on Signal Processing, 2019, 67 (10): 2543- 2553. 
																							 doi: 10.1109/TSP.2019.2908142  | 
										
| 32 |  
											FRIEDLANDER B, WEISS A J Direction finding in the presence of mutual coupling. IEEE Trans. on Antennas and Propagation, 1991, 39 (3): 273- 284. 
																							 doi: 10.1109/8.76322  | 
										
| [1] | Luo CHEN, Xiangrui DAI, Xiaofei ZHANG. Joint angle and frequency estimation for linear array: an extended DOA-matrix method [J]. Journal of Systems Engineering and Electronics, 2022, 33(4): 887-895. | 
| [2] | Shenghua WANG, Yunhe CAO, Yutao LIU. A method of Robust low-angle target height and compound reflection coefficient joint estimation [J]. Journal of Systems Engineering and Electronics, 2022, 33(2): 322-329. | 
| [3] | Ping LI, Jianfeng LI, Gaofeng ZHAO. Low complexity DOA estimation for massive UCA with single snapshot [J]. Journal of Systems Engineering and Electronics, 2022, 33(1): 22-27. | 
| [4] | Shuai SHAO, Aijun LIU, Changjun YU, Quanrui ZHAO. Polarization quaternion DOA estimation based on vector MISC array [J]. Journal of Systems Engineering and Electronics, 2021, 32(4): 764-778. | 
| [5] | Yanan DU, Hongyuan GAO, Menghan CHEN. Direction of arrival estimation method based on quantum electromagnetic field optimization in the impulse noise [J]. Journal of Systems Engineering and Electronics, 2021, 32(3): 527-537. | 
| [6] | Huihui MA, Haihong TAO. Joint 2D-DOA and polarization estimation for sparse nonuniform rectangular array composed of spatially spread electromagnetic vector sensor [J]. Journal of Systems Engineering and Electronics, 2020, 31(6): 1116-1127. | 
| [7] | Chenghu CAO, Yongbo ZHAO, Xiaojiao PANG, Baoqing XU, Sheng CHEN. A method based on Chinese remainder theorem with all phase DFT for DOA estimation in sparse array [J]. Journal of Systems Engineering and Electronics, 2020, 31(1): 1-11. | 
| [8] | Kunlai XIONG, Zhangmeng LIU, Pei WANG. SAGE-based algorithm for DOA estimation and array calibration in the presence of sensor location errors [J]. Journal of Systems Engineering and Electronics, 2019, 30(6): 1074-1080. | 
| [9] | Shun He, Zhiwei Yang, and Guisheng Liao. DOA estimation of wideband signals based on iterative spectral reconstruction [J]. Journal of Systems Engineering and Electronics, 2017, 28(6): 1039-1045. | 
| [10] | Jiaqi Zhen and Yong Liu. DOA estimation for mixed signals with gain-phase [J]. Journal of Systems Engineering and Electronics, 2017, 28(6): 1046-1056. | 
| [11] | Xinhai Wang, Gong Zhang, Fangqing Wen, De Ben, and Wenbo Liu. Angle estimation for bistatic MIMO radar with unknown mutual coupling based on three-way compressive sensing [J]. Systems Engineering and Electronics, 2017, 28(2): 257-266. | 
| [12] | Jichao Zhao and Haihong Tao. Quaternion based joint DOA and polarization parameters estimation with stretched three-component electromagnetic vector sensor array [J]. Systems Engineering and Electronics, 2017, 28(1): 1-. | 
| [13] | Jingjing Cai, Dan Bao, and Peng Li. DOA estimation via sparse recovering from the smoothed covariance vector [J]. Systems Engineering and Electronics, 2016, 27(3): 555-561. | 
| [14] | Yi Shen, Yan Jing, and Naizhang Feng. Construction of deterministic sensing matrix and its application to DOA estimation [J]. Systems Engineering and Electronics, 2016, 27(1): 10-. | 
| [15] | Jiaqi Zhen and Zhifang Wang. DOA estimation method for wideband signals by block sparse reconstruction [J]. Systems Engineering and Electronics, 2016, 27(1): 20-. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||