
Journal of Systems Engineering and Electronics ›› 2021, Vol. 32 ›› Issue (5): 1143-1151.doi: 10.23919/JSEE.2021.000098
• DEFENCE ELECTRONICS TECHNOLOGY • Previous Articles Next Articles
					
													Kai ZHOU1,2, Daojing LI1,*( ), Anjing CUI1,2(
), Anjing CUI1,2( ), Dong HAN1,2(
), Dong HAN1,2( ), He TIAN3(
), He TIAN3( ), Haifeng YU4(
), Haifeng YU4( ), Jianbo DU4(
), Jianbo DU4( ), Lei LIU4(
), Lei LIU4( ), Yu ZHU4(
), Yu ZHU4( ), Running ZHANG4(
), Running ZHANG4( )
)
												  
						
						
						
					
				
Received:2020-07-27
															
							
															
							
															
							
																	Online:2021-10-18
															
							
																	Published:2021-11-08
															
						Contact:
								Daojing LI   
																	E-mail:lidj@mail.ie.ac.cn;ajcui@qq.com;handong17@mails.ucas.edu.cn;tianhe0407@126.com;castyu2@126.com;jianbodu.sky@outlook.com;liulei211@163.com;zhuyubit@163.com;13661051645@139.com
																					About author:Supported by:Kai ZHOU, Daojing LI, Anjing CUI, Dong HAN, He TIAN, Haifeng YU, Jianbo DU, Lei LIU, Yu ZHU, Running ZHANG. Sparse flight spotlight mode 3-D imaging of spaceborne SAR based on sparse spectrum and principal component analysis[J]. Journal of Systems Engineering and Electronics, 2021, 32(5): 1143-1151.
 
													
													Table 1
3-D imaging simulation parameters of spaceborne sparse flight in side-look model"
| Parameter | Value | 
| Wave length | 0.03 | 
| System bandwidth | 150 | 
| Reference platform height | 500 | 
| Incident angle | 30 | 
| Spaceborne platform speed | 7 | 
| Minimum sampling interval | 110 | 
| Equivalent aperture length of cross-track | 4.84 | 
| Theoretical cross-track resolution | 1.78 | 
| Unambiguous range of cross-track | 79 | 
| Actual range | 1 | 
| Actual azimuth resolution | 2.2 | 
| Sparse flight orbit times | 23/24 | 
| Multiple of cross-track up-sampling | 64 | 
| 1 | WILEY C A Synthetic aperture radars. IEEE Trans. on Aerospace and Electronic Systems, 1985, 21 (3): 440- 443. | 
| 2 | GIRET R, JEULAND H, ENERT P A study of 3D-SAR concept for a millimeter wave imaging radar onboard an UAV. Proc. of the European Radar Conference, 2005, 201- 204. | 
| 3 | WANG S Z, FANG Y, ZHANG J G, et al Near-field 3D imaging approach combining MJSR and FGG-NUFFT. Journal of Systems Engineering and Electronics, 2019, 30 (6): 1096- 1109. doi: 10.21629/JSEE.2019.06.06 | 
| 4 | HONG W, WANG Y P, LIN Y, et al Research progress on three-dimensional SAR imaging techniques. Journal of Radars, 2018, 7 (6): 633- 654. | 
| 5 | PETERSON E H, FOTOPOULOS G, ZEE R E A feasibility assessment for low-cost InSAR formation-flying microsatellites. IEEE Trans. on Geoscience and Remote Sensing, 2009, 47 (8): 2847- 2858. doi: 10.1109/TGRS.2009.2017521 | 
| 6 | ZINK M, BARTUSCH M, MILLER D. TanDEM-X mission status. Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2012: 1896−1899. | 
| 7 | TRIDON D B, BACHMANN M, BOER J, et al. TanDEM-X going for the DEM: acquisition, performance, and further activities. Proc. of the IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar, 2015: 163−168. | 
| 8 | REIGBER A, MOREIRA A, PAPATHANASSIOU K P. First demonstration of airborne SAR tomography using multi baseline L-band data. IEEE Trans. on Geoscience and Remote Sensing, 2000, 38(1):44−46. | 
| 9 | CANDES E J, WAKIN M B An introduction to compressive sampling. IEEE Signal Processing Magazine, 2008, 25 (2): 21- 30. doi: 10.1109/MSP.2007.914731 | 
| 10 | CANDES E Compressive sampling. Proc. of the International Congress of Mathematicians, 2006, 1- 20. | 
| 11 | DONOHO D L Compressed sensing. IEEE Trans. on Information Theory, 2006, 52 (4): 1289- 1306. doi: 10.1109/TIT.2006.871582 | 
| 12 | XU H P Baseline analysis and design for distributed spaceborne inteferometric SAR. Journal of Electronics and Information Technology, 2003, 25 (9): 1194- 1199. | 
| 13 | ZHU X X, BAMLER R Very high resolution spaceborne SAR tomography in urban environment. IEEE Trans. on Geoscience and Remote Sensing, 2010, 48 (12): 4296- 4308. doi: 10.1109/TGRS.2010.2050487 | 
| 14 | ZHU X X, BAMLER R Sparse tomographic SAR reconstruction from mixed TerraSAR-X/TanDEM-X data stacks. Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2012, 7468- 7471. | 
| 15 | BAMLER R, ZHU X X Let’s do the time warp: multicomponent nonlinear motion estimation in differential SAR tomography. IEEE Geoscience & Remote Sensing Letters, 2011, 8 (4): 735- 739. | 
| 16 | GE N, ZHU X X Bistatic-like differential SAR tomography. IEEE Trans. on Geoscience and Remote Sensing, 2019, 57 (8): 5883- 5893. doi: 10.1109/TGRS.2019.2902814 | 
| 17 | TIAN H, LI D J Sparse flight array SAR downward-looking 3-D imaging based on compressed sensing. IEEE Geoscience and Remote Sensing Letters, 2016, 13 (10): 1395- 1399. doi: 10.1109/LGRS.2016.2560238 | 
| 18 | TIAN H, LI D J Sparse sampling-based microwave 3-D imaging using interferometry and frequency-domain principal component analysis. IET Radar, Sonar & Navigation, 2017, 11 (12): 1886- 1891. | 
| 19 | LI L C, LI D J Sparse array SAR 3D imaging for continuous scene based on compressed sensing. Journal of Electronics and Information Technology, 2014, 36 (9): 2166- 2172. | 
| 20 | LI L C, LI D J, PAN Z H Compressed sensing application in interferometric synthetic aperture radar. Science China-Information Sciences, 2017, 60 (10): 102305. doi: 10.1007/s11432-016-9017-6 | 
| 21 | TIAN H, LI D J Motion compensation and 3-D imaging algorithm in sparse flight based airborne array SAR. Journal of Radars, 2018, 7 (6): 717- 729. | 
| 22 | MOORE B Principal component analysis in linear systems: controllability, observability, and model reduction. IEEE Trans. on Automatic Control, 1981, 26 (1): 17- 32. doi: 10.1109/TAC.1981.1102568 | 
| 23 | MA Y Z, CHEN N, XIONG X L Wind shear warning algorithm based on PCA and phase difference correction. Systems Engineering and Electronics, 2020, 42 (1): 52- 60. | 
| 24 | TIAN H, YU H F, ZHU Y, et al Sparse flight 3-D imaging of spaceborne SAR based on frequency domain sparse compressed sensing. Journal of Electronics and Information Technology, 2020, 42 (8): 201- 2028. | 
| 25 | GOLOMB S W, SCHOLTZ R A Generalized barker sequences. IEEE Trans. on Information Theory, 1965, 11 (4): 533- 537. doi: 10.1109/TIT.1965.1053828 | 
| 26 | HOLUBNYCHYI A. Generalized binary barker sequences and their application to radar technology. Proc. of the IEEE Signal Processing Symposium, 2013: 1−9. | 
| 27 | TENG X M, LI D J Downward-looking 3D imaging processing for airborne cross-track sparse array radar. Journal of Electronics and Information Technology, 2012, 34 (6): 1311- 1317. doi: 10.3724/SP.J.1146.2011.00739 | 
| 28 | ROSEN P A, HENSLEY S, JOUGHIN I R, et al Synthetic aperture radar interferometry. Proceedings of the IEEE, 2002, 88 (3): 333- 382. | 
| 29 | ZHANG T, YANG B. Big data dimension reduction using PCA. Proc. of the IEEE International Conference on Smart Cloud, 2016: 152−157. | 
| 30 | KHAN M D S, APPINA B A, CHANNAPPAYYA S S Full-reference stereo image quality assessment using natural stereo scene statistics. IEEE Signal Processing Letters, 2015, 22 (11): 1985- 1989. doi: 10.1109/LSP.2015.2449878 | 
| [1] | Jing FANG, Shaohai HU, Xiaole MA. SAR image de-noising via grouping-based PCA and guided filter [J]. Journal of Systems Engineering and Electronics, 2021, 32(1): 81-91. | 
| [2] | Yang Fang, Baoping Wang, Chao Sun, Zuxun Song, and Shuzhen Wang. Near field 3-D imaging approach for joint high-resolution imaging and phase error correction [J]. Systems Engineering and Electronics, 2017, 28(2): 199-211. | 
| [3] | Jianfei Ding, Guangya Si, Baoqiang Li, Jingyu Yang, and Yu Zhang. Construction of composite indicator system based on simulation data mining [J]. Systems Engineering and Electronics, 2017, 28(1): 81-. | 
| [4] | Ke Zhang, Yintao Zhang, and Pinpin Qu. Comprehensive multivariate grey incidence degree based on principal component analysis [J]. Journal of Systems Engineering and Electronics, 2014, 25(5): 840-847. | 
| [5] | Wang Jinfeng & Pi Yiming. SAR tomography imaging via higher-order spectrum analysis [J]. Journal of Systems Engineering and Electronics, 2009, 20(4): 748-754. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||