Journal of Systems Engineering and Electronics ›› 2024, Vol. 35 ›› Issue (3): 666-678.doi: 10.23919/JSEE.2024.000042
• SYSTEMS ENGINEERING • Previous Articles
Jun TANG(), Wanting QIN(), Qingtao PAN(), Songyang LAO()
Received:
2022-05-17
Online:
2024-06-18
Published:
2024-06-19
Contact:
Jun TANG
E-mail:tangjun06@nudt.edu.cn;qinwt@nudt.edu.cn;panqingtao@nudt.edu.cn;laosongyang@vip.sina.com
About author:
Supported by:
Jun TANG, Wanting QIN, Qingtao PAN, Songyang LAO. A deep multimodal fusion and multitasking trajectory prediction model for typhoon trajectory prediction to reduce flight scheduling cancellation[J]. Journal of Systems Engineering and Electronics, 2024, 35(3): 666-678.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Typical flight scheduling algorithms and respective characteristics in the last four years"
Work | Model framework | Key algorithm | Model execution | Model verification | Year | |||
Stage | Target | Proof | Real data | Compared | ||||
[ | Four | Three | No | Mixed integer linear programming | Dynamic | French airspace | Yes | 2020 |
[ | Two | Single | No | Shift power law | Dynamic | Delta airlines | No | 2019 |
[ | Single | Three | Yes | Dantzig-Wolfe decomposition | Static | Iranian airlines | No | 2018 |
[ | Two | Two | No | Mixed integer linear programming | Static | Chinese airport | Yes | 2020 |
[ | Two | Two | No | Partheno-genetic algorithm | Static | No | Yes | 2017 |
[ | Two | Single | No | Mixed integer linear programming | Static | No | Yes | 2020 |
[ | Three | Two | No | Genetic algorithm | Static | American airline | No | 2017 |
[ | Single | Single | No | Memetic algorithm | Static | Chinese airway network | Yes | 2018 |
[ | Two | Single | No | Sample average approximation | Static | Legacy airline company | Yes | 2018 |
[ | Single | Two | No | Genetic algorithm | Static | Chinese airspace | Yes | 2018 |
[ | Three | Three | Yes | Mixed integer nonlinear programming | Static | No | Yes | 2018 |
[ | Single | Single | Yes | Vertical navigation (VNAV) path model | Static | No | No | 2017 |
[ | Three | Single | No | Genetic algorithm | Dynamic | No | No | 2019 |
[ | Single | Single | Yes | Artificial bee colony algorithm | Static | No | Yes | 2017 |
[ | Single | Three | No | Simulated annealing algorithm | Static | Beijing-Tianjin-Hebei airport | Yes | 2020 |
[ | Single | Single | No | Mixed integer nonlinear programming | Static | Shanghai metroplex | Yes | 2020 |
[ | Single | Single | No | Max-plus model | Dynamic | No | No | 2019 |
[ | Single | Single | No | Network model | Static | Chinese airspace | No | 2017 |
[ | Two | Single | Yes | Particle swarm optimization | Static | Jeju international airport | Yes | 2019 |
[ | Two | Single | No | Integer linear programming | Static | Eastern China airline | Yes | 2019 |
Table 2
Arrivals and cancellations of flights of Beijing, Qingdao, Shanghai, Hangzhou, Guangzhou and Taipei from August 9th 2019 to August 11th 2019"
Start point | End point | August 9th | August 10th | August 11th | |||||||||
[0,6) | [6,12) | [12,18) | [18,24) | [0,6) | [6,12) | [12,18) | [18,24) | [0,6) | [6,12) | [12,18) | [18,24) | ||
Beijing | Qingdao | (0,0) | (6,0) | (2,0) | (2,2) | (0,0) | (6,0) | (1,1) | (4,2) | (0,0) | (2,7) | (0,2) | (0,8) |
Shanghai | (0,0) | (17,1) | (3,15) | (0,14) | (0,0) | (0,18) | (1,22) | (0,13) | (0,0) | (17,3) | (18,2) | (11,3) | |
Hangzhou | (1,0) | (11,0) | (2,4) | (0,8) | (0,1) | (2,9) | (1,7) | (4,4) | (1,0) | (11,1) | (5,1) | (9,0) | |
Guangzhou | (0,0) | (13,0) | (13,1) | (4,3) | (0,0) | (9,4) | (13,0) | (7,0) | (0,0) | (12,1) | (13,0) | (7,0) | |
Taipei | (0,0) | (2,2) | (1,0) | (1,0) | (0,0) | (2,0) | (2,0) | (1,0) | (0,0) | (2,0) | (1,0) | (2,0) | |
Qingdao | Beijing | (0,0) | (4,0) | (4,1) | (2,1) | (0,0) | (4,0) | (5,0) | (3,1) | (0,0) | (2,2) | (1,7) | (0,5) |
Shanghai | (0,0) | (8,1) | (6,3) | (0,10) | (0,0) | (0,11) | (0,9) | (0,9) | (0,0) | (6,5) | (2,7) | (2,7) | |
Hangzhou | (0,0) | (3,0) | (3,1) | (0,1) | (0,0) | (0,4) | (0,4) | (0,2) | (0,0) | (2,1) | (1,3) | (0,1) | |
Guangzhou | (0,0) | (3,0) | (4,0) | (4,0) | (0,0) | (3,0) | (4,0) | (3,2) | (0,0) | (3,0) | (1,3) | (0,5) | |
Taipei | (0,0) | (0,1) | (0,2) | (0,0) | (0,0) | (0,0) | (1,0) | (0,0) | (0,0) | (0,0) | (1,0) | (0,0) | |
Shanghai | Beijing | (0,0) | (18,0) | (13,4) | (1,14) | (0,0) | (1,16) | (0,19) | (0,15) | (0,0) | (8,8) | (13,4) | (14,1) |
Qingdao | (0,0) | (9,2) | (7,1) | (0,11) | (0,0) | (0,11) | (0,8) | (0,10) | (0,0) | (0,12) | (3,4) | (3,7) | |
Hangzhou | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | |
Guangzhou | (0,0) | (15,0) | (13,3) | (1,14) | (0,0) | (0,15) | (0,16) | (4,12) | (0,0) | (13,1) | (14,3) | (11,2) | |
Taipei | (0,0) | (0,5) | (0,8) | (1,3) | (0,0) | (0,3) | (0,8) | (0,4) | (0,0) | (6,0) | (8,0) | (3,0) | |
Hangzhou | Beijing | (0,0) | (8,0) | (8,1) | (1,9) | (0,0) | (0,8) | (0,8) | (4,6) | (0,0) | (8,0) | (1,8) | (0,10) |
Qingdao | (0,0) | (5,0) | (0,1) | (1,2) | (0,0) | (0,4) | (0,1) | (0,4) | (0,0) | (1,4) | (0,1) | (2,1) | |
Shanghai | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | |
Guangzhou | (2,0) | (7,0) | (9,1) | (1,8) | (0,2) | (0,8) | (0,9) | (2,7) | (1,1) | (5,3) | (9,1) | (8,0) | |
Taipei | (0,0) | (0,1) | (0,1) | (1,0) | (0,0) | (0,2) | (0,0) | (1,1) | (0,0) | (2,0) | (0,0) | (1,0) | |
Guangzhou | Beijing | (0,0) | (8,0) | (9,0) | (8,3) | (0,0) | (7,1) | (11,2) | (11,0) | (0,0) | (8,0) | (13,0) | (10,1) |
Qingdao | (0,0) | (1,4) | (5,0) | (2,0) | (0,0) | (4,0) | (4,1) | (2,1) | (0,0) | (0,4) | (2,3) | (2,1) | |
Shanghai | (1,1) | (17,0) | (6,11) | (0,10) | (0,2) | (0,17) | (2,15) | (5,7) | (4,1) | (13,9) | (16,1) | (9,1) | |
Hangzhou | (2,0) | (9,0) | (3,5) | (0,9) | (0,2) | (0,9) | (1,8) | (6,4) | (1,1) | (6,4) | (8,0) | (8,0) | |
Taipei | (0,0) | (0,1) | (2,1) | (0,0) | (0,0) | (1,0) | (2,0) | (1,0) | (0,0) | (1,0) | (2,0) | (0,0) | |
Taipei | Beijing | (0,0) | (1,0) | (1,2) | (1,0) | (0,0) | (1,0) | (2,0) | (2,0) | (0,0) | (0,0) | (3,0) | (2,0) |
Qingdao | (0,0) | (0,1) | (0,2) | (0,0) | (0,0) | (1,0) | (0,0) | (0,0) | (0,0) | (1,0) | (0,0) | (0,0) | |
Shanghai | (0,0) | (0,4) | (1,11) | (0,0) | (0,0) | (0,2) | (0,2) | (0,1) | (0,0) | (6,0) | (12,0) | (1,0) | |
Hangzhou | (0,0) | (0,0) | (1,1) | (0,1) | (0,0) | (0,1) | (0,1) | (1,1) | (0,0) | (1,0) | (2,0) | (0,0) | |
Guangzhou | (0,0) | (0,1) | (3,1) | (0,0) | (0,0) | (0,0) | (3,0) | (1,0) | (0,0) | (1,0) | (2,0) | (0,0) |
Table 3
Airport location information"
Airport | Location |
Beijing Capital Airport | (40.08 N,116.58 E) |
Beijing Daxing Airport | (39.51 N,116.41 E) |
Qingdao Liuting Airport | (36.27 N,120.38 E) |
Shanghai Hongqiao Airport | (31.19 N,121.34 E) |
Shanghai Pudong Airport | (31.14 N,121.79 E) |
Hangzhou Xiaoshan Airport | (30.33 N,120.22 E) |
Guangzhou Baiyun Airport | (23.18 N,113.26 E) |
Taipei Taoyuan Airport | (25.09 N,121.60 E) |
Taipei Songshan Airport | (25.06 N,121.55 E) |
Table 4
Location information of Lichma at 0:00, 6:00, 12:00, and 18:00 from August 9th to August 11th"
Date | Time | Location |
August 9th | 0:00 | (26.5 N, 123.4 E) |
6:00 | (27.0 N, 122.5 E) | |
12:00 | (27.5 N, 122.0 E) | |
18:00 | (28.3 N, 121.4 E) | |
August 10th | 0:00 | (28.9 N, 120.8 E) |
6:00 | (29.9 N, 120.3 E) | |
12:00 | (30.7 N, 120.2 E) | |
18:00 | (31.7 N, 120.5 E) | |
August 11th | 0:00 | (33.6 N, 120.2 E) |
6:00 | (34.8 N, 119.9 E) | |
12:00 | (35.8 N, 120.2 E) | |
18:00 | (36.9 N, 119.7 E) |
Table 5
Influences of the actual location of typhoon Lichma on the arrival and cancellation of flights in Beijing, Qingdao, Shanghai, Hangzhou, Guangzhou and Taipei from August 9th to August 11th"
Start point | End point | August 9th | August 10th | August 11th | |||||||||||
[0,6) | [6,12) | [12,18) | [18,24) | [0,6) | [6,12) | [12,18) | [18,24) | [0,6) | [6,12) | [12,18) | [18,24) | ||||
Beijing | Qingdao | (0,0) | (6,0) | (2,0) | (2,2) | (0,0) | (6,0) | (1,1) | (4,2) | (0,0) | (2,7) | (0,2) | (0,8) | ||
Shanghai | (0,0) | (17,1) | (3,15) | (0,14) | (0,0) | (0,18) | (1,22) | (0,13) | (0,0) | (17,3) | (18,2) | (11,3) | |||
Hangzhou | (1,0) | (11,0) | (2,4) | (0,8) | (0,1) | (2,9) | (1,7) | (4,4) | (1,0) | (11,1) | (5,1) | (9,0) | |||
Guangzhou | (0,0) | (13,0) | (13,1) | (4,3) | (0,0) | (9,4) | (13,0) | (7,0) | (0,0) | (12,1) | (13,0) | (7,0) | |||
Taipei | (0,0) | (2,2) | (1,0) | (1,0) | (0,0) | (2,0) | (2,0) | (1,0) | (0,0) | (2,0) | (1,0) | (2,0) | |||
Qingdao | Beijing | (0,0) | (4,0) | (4,1) | (2,1) | (0,0) | (4,0) | (5,0) | (3,1) | (0,0) | (2,2) | (1,7) | (0,5) | ||
Shanghai | (0,0) | (8,1) | (6,3) | (0,10) | (0,0) | (0,11) | (0,9) | (0,9) | (0,0) | (6,5) | (2,7) | (2,7) | |||
Hangzhou | (0,0) | (3,0) | (3,1) | (0,1) | (0,0) | (0,4) | (0,4) | (0,2) | (0,0) | (2,1) | (1,3) | (0,1) | |||
Guangzhou | (0,0) | (3,0) | (4,0) | (4,0) | (0,0) | (3,0) | (4,0) | (3,2) | (0,0) | (3,0) | (1,3) | (0,5) | |||
Taipei | (0,0) | (0,1) | (0,2) | (0,0) | (0,0) | (0,0) | (1,0) | (0,0) | (0,0) | (0,0) | (1,0) | (0,0) | |||
Shanghai | Beijing | (0,0) | (18,0) | (13,4) | (1,14) | (0,0) | (1,16) | (0,19) | (0,15) | (0,0) | (8,8) | (13,4) | (14,1) | ||
Qingdao | (0,0) | (9,2) | (7,1) | (0,11) | (0,0) | (0,11) | (0,8) | (0,10) | (0,0) | (0,12) | (3,4) | (3,7) | |||
Hangzhou | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | |||
Guangzhou | (0,0) | (15,0) | (13,3) | (1,14) | (0,0) | (0,15) | (0,16) | (4,12) | (0,0) | (13,1) | (14,3) | (11,2) | |||
Taipei | (0,0) | (0,5) | (0,8) | (1,3) | (0,0) | (0,3) | (0,8) | (0,4) | (0,0) | (6,0) | (8,0) | (3,0) | |||
Hangzhou | Beijing | (0,0) | (8,0) | (8,1) | (1,9) | (0,0) | (0,8) | (0,8) | (4,6) | (0,0) | (8,0) | (1,8) | (0,10) | ||
Qingdao | (0,0) | (5,0) | (0,1) | (1,2) | (0,0) | (0,4) | (0,1) | (0,4) | (0,0) | (1,4) | (0,1) | (2,1) | |||
Shanghai | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | |||
Guangzhou | (2,0) | (7,0) | (9,1) | (1,8) | (0,2) | (0,8) | (0,9) | (2,7) | (1,1) | (5,3) | (9,1) | (8,0) | |||
Taipei | (0,0) | (0,1) | (0,1) | (1,0) | (0,0) | (0,2) | (0,0) | (1,1) | (0,0) | (2,0) | (0,0) | (1,0) | |||
Guangzhou | Beijing | (0,0) | (8,0) | (9,0) | (8,3) | (0,0) | (7,1) | (11,2) | (11,0) | (0,0) | (8,0) | (13,0) | (10,1) | ||
Qingdao | (0,0) | (1,4) | (5,0) | (2,0) | (0,0) | (4,0) | (4,1) | (2,1) | (0,0) | (0,4) | (2,3) | (2,1) | |||
Shanghai | (1,1) | (17,0) | (6,11) | (0,10) | (0,2) | (0,17) | (2,15) | (5,7) | (4,1) | (13,9) | (16,1) | (9,1) | |||
Hangzhou | (2,0) | (9,0) | (3,5) | (0,9) | (0,2) | (0,9) | (1,8) | (6,4) | (1,1) | (6,4) | (8,0) | (8,0) | |||
Taipei | (0,0) | (0,1) | (2,1) | (0,0) | (0,0) | (1,0) | (2,0) | (1,0) | (0,0) | (1,0) | (2,0) | (0,0) | |||
Taipei | Beijing | (0,0) | (1,0) | (1,2) | (1,0) | (0,0) | (1,0) | (2,0) | (2,0) | (0,0) | (0,0) | (3,0) | (2,0) | ||
Qingdao | (0,0) | (0,1) | (0,2) | (0,0) | (0,0) | (1,0) | (0,0) | (0,0) | (0,0) | (1,0) | (0,0) | (0,0) | |||
Shanghai | (0,0) | (0,4) | (1,11) | (0,0) | (0,0) | (0,2) | (0,2) | (0,1) | (0,0) | (6,0) | (12,0) | (1,0) | |||
Hangzhou | (0,0) | (0,0) | (1,1) | (0,1) | (0,0) | (0,1) | (0,1) | (1,1) | (0,0) | (1,0) | (2,0) | (0,0) | |||
Guangzhou | (0,0) | (0,1) | (3,1) | (0,0) | (0,0) | (0,0) | (3,0) | (1,0) | (0,0) | (1,0) | (2,0) | (0,0) |
Table 6
Predicted trajectory location of Lichma at 0:00, 6:00, 12:00, and 18:00 from August 9th to August 11th"
Date | Time | Predicted trajectory location |
August 9th | 0:00 | (26.658 N, 124.986 E) |
6:00 | (27.007 N, 123.023 E) | |
12:00 | (27.905 N, 121.832 E) | |
18:00 | (28.424 N, 121.794 E) | |
August 10th | 0:00 | (29.593 N, 121.144 E) |
6:00 | (28.627 N, 119.829 E) | |
12:00 | (30.038 N, 1196.68 E) | |
18:00 | (307.72 N, 120.367 E) | |
August 11th | 0:00 | (321.87 N, 120.733 E) |
6:00 | (34.672 N, 120.636 E) | |
12:00 | (35.968 N, 119.747 E) | |
18:00 | (374.26 N, 119.390 E) |
Table 7
Influences of the predicted location of Typhoon Lichma on the arrival and cancellation of flights in Beijing, Qingdao, Shanghai, Hangzhou, Guangzhou and Taipei from August 9th to August 11th"
Start point | End point | August 9th | August 10th | August 11th | |||||||||||
[0,6) | [6,12) | [12,18) | [18,24) | [0,6) | [6,12) | [12,18) | [18,24) | [0,6) | [6,12) | [12,18) | [18,24) | ||||
Beijing | Qingdao | (0,0) | (6,0) | (2,0) | (2,2) | (0,0) | (6,0) | (1,1) | (4,2) | (0,0) | (2,7) | (0,2) | (0,8) | ||
Shanghai | (0,0) | (17,1) | (3,15) | (0,14) | (0,0) | (0,18) | (1,22) | (0,13) | (0,0) | (17,3) | (18,2) | (11,3) | |||
Beijing | Hangzhou | (1,0) | (11,0) | (2,4) | (0,8) | (0,1) | (2,9) | (1,7) | (4,4) | (1,0) | (11,1) | (5,1) | (9,0) | ||
Guangzhou | (0,0) | (13,0) | (13,1) | (4,3) | (0,0) | (9,4) | (13,0) | (7,0) | (0,0) | (12,1) | (13,0) | (7,0) | |||
Taipei | (0,0) | (2,2) | (1,0) | (1,0) | (0,0) | (2,0) | (2,0) | (1,0) | (0,0) | (2,0) | (1,0) | (2,0) | |||
Qingdao | Beijing | (0,0) | (4,0) | (4,1) | (2,1) | (0,0) | (4,0) | (5,0) | (3,1) | (0,0) | (2,2) | (1,7) | (0,5) | ||
Shanghai | (0,0) | (8,1) | (6,3) | (0,10) | (0,0) | (0,11) | (0,9) | (0,9) | (0,0) | (6,5) | (2,7) | (2,7) | |||
Hangzhou | (0,0) | (3,0) | (3,1) | (0,1) | (0,0) | (0,4) | (0,4) | (0,2) | (0,0) | (2,1) | (1,3) | (0,1) | |||
Guangzhou | (0,0) | (3,0) | (4,0) | (4,0) | (0,0) | (3,0) | (4,0) | (3,2) | (0,0) | (3,0) | (1,3) | (0,5) | |||
Taipei | (0,0) | (0,1) | (0,2) | (0,0) | (0,0) | (0,0) | (1,0) | (0,0) | (0,0) | (0,0) | (1,0) | (0,0) | |||
Shanghai | Beijing | (0,0) | (18,0) | (13,4) | (1,14) | (0,0) | (1,16) | (0,19) | (0,15) | (0,0) | (8,8) | (13,4) | (14,1) | ||
Qingdao | (0,0) | (9,2) | (7,1) | (0,11) | (0,0) | (0,11) | (0,8) | (0,10) | (0,0) | (0,12) | (3,4) | (3,7) | |||
Hangzhou | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | |||
Guangzhou | (0,0) | (15,0) | (13,3) | (1,14) | (0,0) | (0,15) | (0,16) | (4,12) | (0,0) | (13,1) | (14,3) | (11,2) | |||
Taipei | (0,0) | (0,5) | (0,8) | (1,3) | (0,0) | (0,3) | (0,8) | (0,4) | (0,0) | (6,0) | (8,0) | (3,0) | |||
Hangzhou | Beijing | (0,0) | (8,0) | (8,1) | (1,9) | (0,0) | (0,8) | (0,8) | (4,6) | (0,0) | (8,0) | (1,8) | (0,10) | ||
Qingdao | (0,0) | (5,0) | (0,1) | (1,2) | (0,0) | (0,4) | (0,1) | (0,4) | (0,0) | (1,4) | (0,1) | (2,1) | |||
Shanghai | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | |||
Guangzhou | (2,0) | (7,0) | (9,1) | (1,8) | (0,2) | (0,8) | (0,9) | (2,7) | (1,1) | (5,3) | (9,1) | (8,0) | |||
Taipei | (0,0) | (0,1) | (0,1) | (1,0) | (0,0) | (0,2) | (0,0) | (1,1) | (0,0) | (2,0) | (0,0) | (1,0) | |||
Guangzhou | Beijing | (0,0) | (8,0) | (9,0) | (8,3) | (0,0) | (7,1) | (11,2) | (11,0) | (0,0) | (8,0) | (13,0) | (10,1) | ||
Qingdao | (0,0) | (1,4) | (5,0) | (2,0) | (0,0) | (4,0) | (4,1) | (2,1) | (0,0) | (0,4) | (2,3) | (2,1) | |||
Shanghai | (1,1) | (17,0) | (6,11) | (0,10) | (0,2) | (0,17) | (2,15) | (5,7) | (4,1) | (13,9) | (16,1) | (9,1) | |||
Hangzhou | (2,0) | (9,0) | (3,5) | (0,9) | (0,2) | (0,9) | (1,8) | (6,4) | (1,1) | (6,4) | (8,0) | (8,0) | |||
Taipei | (0,0) | (0,1) | (2,1) | (0,0) | (0,0) | (1,0) | (2,0) | (1,0) | (0,0) | (1,0) | (2,0) | (0,0) | |||
Taipei | Beijing | (0,0) | (1,0) | (1,2) | (1,0) | (0,0) | (1,0) | (2,0) | (2,0) | (0,0) | (0,0) | (3,0) | (2,0) | ||
Qingdao | (0,0) | (0,1) | (0,2) | (0,0) | (0,0) | (1,0) | (0,0) | (0,0) | (0,0) | (1,0) | (0,0) | (0,0) | |||
Shanghai | (0,0) | (0,4) | (1,11) | (0,0) | (0,0) | (0,2) | (0,2) | (0,1) | (0,0) | (6,0) | (12,0) | (1,0) | |||
Hangzhou | (0,0) | (0,0) | (1,1) | (0,1) | (0,0) | (0,1) | (0,1) | (1,1) | (0,0) | (1,0) | (2,0) | (0,0) | |||
Guangzhou | (0,0) | (0,1) | (3,1) | (0,0) | (0,0) | (0,0) | (3,0) | (1,0) | (0,0) | (1,0) | (2,0) | (0,0) |
1 |
GUI G, LIU F, SUN J L, et al Flight delay prediction based on aviation big data and machine learning. IEEE Trans. on Vehicular Technology, 2020, 69 (1): 140- 150.
doi: 10.1109/TVT.2019.2954094 |
2 | WANG H J, SUN J Q, FAN K Relationships between the North Pacific Oscillation and the typhoon/hurricane frequencies. Science in China, 2007, 50 (9): 1409- 1416. |
3 |
KOESDWIADY A, SOUA R, KARRAY F Improving traffic flow prediction with weather information in connected cars: a deep learning approach. IEEE Trans. on Vehicular Technology, 2016, 65 (12): 9508- 9517.
doi: 10.1109/TVT.2016.2585575 |
4 |
ARAB A, TEKIN E, KHODAEI A, et al System hardening and condition-based maintenance for electric power infrastructure under hurricane effects. IEEE Trans. on Reliability, 2016, 65 (3): 1457- 1470.
doi: 10.1109/TR.2016.2601818 |
5 | LI Y H, WANG A J, QIAO L, et al. The impact of typhoon Morakot on the modern sedimentary environment of the mud deposition center off the Zhejiang–Fujian coast, China. Continental Shelf Research, 2012, 37: 92−100. |
6 |
GUO T J, LI G S Study on methods to identify the impact factors of economic losses due to typhoon storm surge based on confirmatory factor analysis. Natural Hazards, 2020, 100 (2): 515- 534.
doi: 10.1007/s11069-019-03823-w |
7 |
ETANI N Development of a predictive model for on-time arrival flight of airliner by discovering correlation between flight and weather data. Journal of Big Data, 2019, 6 (1): 85- 98.
doi: 10.1186/s40537-019-0251-y |
8 |
XU Y, DALMAU R, MELGOSA M, et al A framework for collaborative air traffic flow management minimizing costs for airspace users: enabling trajectory options and flexible pre-tactical delay management. Transportation Research Part B: Methodological, 2020, 134, 229- 255.
doi: 10.1016/j.trb.2020.02.012 |
9 | CAO Y K, ZHU C P, WANG Y J, et al. A method of reducing flight delay by exploring internal mechanism of flight delays. Journal of Advanced Transportation, 2019, 2019: 7069380. |
10 |
KHAKSAR H, SHEIKHOLESLAMI A A model for incorporating robustness into flight planning. Proceedings. of the Institution of Civil Engineers-Transport, 2018, 171 (5): 275- 285.
doi: 10.1680/jtran.15.00119 |
11 |
WEI M, SUN B, WU W, et al A multiple objective optimization model for aircraft arrival and departure scheduling on multiple runways. Mathematical Biosciences and Engineering, 2020, 17 (5): 5545- 5560.
doi: 10.3934/mbe.2020298 |
12 | TANG F, LIU S, DONG X Y, et al. Aircraft ground service scheduling problems and partheno-genetic algorithm with hybrid heuristic rule. Proc. of the IEEE 7th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems, 2017: 551−555. |
13 |
CECEN R K, CETEK C, KAYA O Aircraft sequencing and scheduling in TMAs under wind direction uncertainties. Aeronautical Journal New Series, 2020, 124 (1282): 1896- 1912.
doi: 10.1017/aer.2020.68 |
14 | ABDELGHANY A, ABDELGHANY K, AZADIAN F. Airline flight schedule planning under competition. Computers & Operations Research, 2017, 87: 20−39. |
15 | WANG Z J, ZHANG X J. An approach of flight scheduling optimization meet the time conformance monitoring. Proc. of the 13th World Congress on Intelligent Control and Automation, 2018: 1647−1651. |
16 | KENAN N, JEBALI A, DIABAT A An integrated flight scheduling and fleet assignment problem under uncertainty. Computers & Operations Research, 2018, 100, 333- 342. |
17 |
XIAO M M, CAI K Q, ABBASS H A Hybridized encoding for evolutionary multi-objective optimization of air traffic network flow: a case study on China. Transportation Research, Part E. Logistics and Transportation Review, 2018, 115, 35- 55.
doi: 10.1016/j.tre.2018.04.011 |
18 | SAFAK O, CAVUS O, AKTURK M. Multi-stage airline scheduling problem with stochastic passenger demand and non-cruise times. Transportation Research, Part B: Methodological, 2018, 114: 39−67. |
19 | TAKEICHI N. Nominal flight time optimization for arrival time scheduling through estimation/resolution of delay accumulation. Transportation Research, Part C: Emerging technologies, 2017, 77: 433−443. |
20 | GU J W, TANG X M, HONG W J, et al Real-time optimization of short-term flight profiles to control time of arrival. Aerospace Science & Technology, 2019, 84, 1164- 1174. |
21 | NG K K H, LEE C K M, CHAN F T S, et al Robust aircraft sequencing and scheduling problem with arrival/departure delay using the min-max regret approach. Transportation Research Part E: Logistics & Transportation Review, 2017, 106, 115- 136. |
22 | GENG X, HU M H Simulated annealing method-based flight schedule optimization in multiairport systems. Mathematical Problems in Engineering, 2020, 2020, 4731918. |
23 | YANG Y C, GAO Z C, HE C Stochastic terminal flight arrival and departure scheduling problem under performance-based navigation environment. Transportation Research Part C: Emerging Technologies, 2020, 119, 102735. |
24 | HAN Y X, ZHANG J W, HUANG X Q Study of the optimization model for traffic flow. Computers & Industrial Engineering, 2019, 136, 429- 435. |
25 | ZHAO D L, TAN Y J, CHENG R, et al. The optimal aircraft scheduling model based on network model. Proc. of the 36th Chinese Control Conference, 2017: 2935−2940. |
26 | HONG Y K, CHOI B H, KIM Y Two-stage stochastic programming based on particle swarm optimization for aircraft sequencing and scheduling. IEEE Trans. on Intelligent Transportation Systems, 2018, 20 (4): 1365- 1377. |
27 | CHEN X D, YU H, CAO K, et al. Uncertainty-aware flight scheduling for airport throughput and flight delay optimization. IEEE Trans. on Aerospace & Electronic Systems, 2020, 56(2): 853−862. |
28 |
ZHANG L, HUANG Z Y, LIU W, et al Weather radar echo prediction method based on convolution neural network and long short-term memory networks for sustainable e-agriculture. Journal of Cleaner Production, 2021, 298, 126776.
doi: 10.1016/j.jclepro.2021.126776 |
29 | FEEYO TECHNOLOGY. Flight status. [2021-01-03]. http://www.variflight.com. |
30 |
MOHAMED R Deep multimodal fusion: a hybrid approach. International Journal of Computer Vision, 2018, 126, 440- 456.
doi: 10.1007/s11263-017-0997-7 |
31 |
QIN W T, TANG J, LU C, et al Trajectory prediction based on long short-term memory network and Kalman filter using hurricanes as an example. Computational Geosciences, 2021, 25, 1005- 1023.
doi: 10.1007/s10596-021-10037-2 |
32 |
GREFF K, SRIVASTAVA R K, KOUTNIK J, et al LSTM: a search space odyssey. IEEE Trans. on Neural Networks and Learning Systems, 2017, 28 (10): 2222- 2232.
doi: 10.1109/TNNLS.2016.2582924 |
33 |
YU Y, SI X S, HU C H, et al A review of recurrent neural networks: LSTM cells and network architectures. Neural Computation, 2019, 31 (7): 1235- 1270.
doi: 10.1162/neco_a_01199 |
34 |
ZHOU X K, HU Y Y, LIANG W, et al Variational LSTM enhanced anomaly detection for industrial big data. IEEE Trans. on Industrial Informatics, 2021, 17 (5): 3469- 3477.
doi: 10.1109/TII.2020.3022432 |
35 | YUAN X H, CHEN C, JIANG M, et al Prediction interval of wind power using parameter optimized Beta distribution based LSTM model. Applied Soft Computing, 2019, 82 (2): 105550. |
36 |
JIN K H, MCCANN M T, FROUSTEY E, et al Deep convolutional neural network for inverse problems in imaging. IEEE Trans. on Image Processing, 2017, 26 (9): 4509- 4522.
doi: 10.1109/TIP.2017.2713099 |
37 |
SARIGUL M, OZYILDIRIM B M AVC M. Differential convolutional neural network. Neural Networks, 2019, 116, 279- 287.
doi: 10.1016/j.neunet.2019.04.025 |
38 |
YING X Y, WANG L G, WANG Y Q, et al Deformable 3D convolution for video super-resolution. IEEE Signal Processing Letters, 2020, 27, 1500- 1504.
doi: 10.1109/LSP.2020.3013518 |
39 |
CHAIB S, LIU H, GU Y F, et al Deep feature fusion for VHR remote sensing scene classification. IEEE Trans. on Geoscience and Remote Sensing, 2017, 55 (8): 4775- 4787.
doi: 10.1109/TGRS.2017.2700322 |
40 |
TANG J, LIU G, PAN Q T A review on representative swarm intelligence algorithms for solving optimization problems: applications and trends. IEEE/CAA Journal of Automatica Sinica, 2021, 8 (10): 1627- 1643.
doi: 10.1109/JAS.2021.1004129 |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||