
Journal of Systems Engineering and Electronics ›› 2024, Vol. 35 ›› Issue (3): 666-678.doi: 10.23919/JSEE.2024.000042
• SYSTEMS ENGINEERING • Previous Articles
Jun TANG(
), Wanting QIN(
), Qingtao PAN(
), Songyang LAO(
)
Received:2022-05-17
Online:2024-06-18
Published:2024-06-19
Contact:
Jun TANG
E-mail:tangjun06@nudt.edu.cn;qinwt@nudt.edu.cn;panqingtao@nudt.edu.cn;laosongyang@vip.sina.com
About author:Supported by:Jun TANG, Wanting QIN, Qingtao PAN, Songyang LAO. A deep multimodal fusion and multitasking trajectory prediction model for typhoon trajectory prediction to reduce flight scheduling cancellation[J]. Journal of Systems Engineering and Electronics, 2024, 35(3): 666-678.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Typical flight scheduling algorithms and respective characteristics in the last four years"
| Work | Model framework | Key algorithm | Model execution | Model verification | Year | |||
| Stage | Target | Proof | Real data | Compared | ||||
| [ | Four | Three | No | Mixed integer linear programming | Dynamic | French airspace | Yes | 2020 |
| [ | Two | Single | No | Shift power law | Dynamic | Delta airlines | No | 2019 |
| [ | Single | Three | Yes | Dantzig-Wolfe decomposition | Static | Iranian airlines | No | 2018 |
| [ | Two | Two | No | Mixed integer linear programming | Static | Chinese airport | Yes | 2020 |
| [ | Two | Two | No | Partheno-genetic algorithm | Static | No | Yes | 2017 |
| [ | Two | Single | No | Mixed integer linear programming | Static | No | Yes | 2020 |
| [ | Three | Two | No | Genetic algorithm | Static | American airline | No | 2017 |
| [ | Single | Single | No | Memetic algorithm | Static | Chinese airway network | Yes | 2018 |
| [ | Two | Single | No | Sample average approximation | Static | Legacy airline company | Yes | 2018 |
| [ | Single | Two | No | Genetic algorithm | Static | Chinese airspace | Yes | 2018 |
| [ | Three | Three | Yes | Mixed integer nonlinear programming | Static | No | Yes | 2018 |
| [ | Single | Single | Yes | Vertical navigation (VNAV) path model | Static | No | No | 2017 |
| [ | Three | Single | No | Genetic algorithm | Dynamic | No | No | 2019 |
| [ | Single | Single | Yes | Artificial bee colony algorithm | Static | No | Yes | 2017 |
| [ | Single | Three | No | Simulated annealing algorithm | Static | Beijing-Tianjin-Hebei airport | Yes | 2020 |
| [ | Single | Single | No | Mixed integer nonlinear programming | Static | Shanghai metroplex | Yes | 2020 |
| [ | Single | Single | No | Max-plus model | Dynamic | No | No | 2019 |
| [ | Single | Single | No | Network model | Static | Chinese airspace | No | 2017 |
| [ | Two | Single | Yes | Particle swarm optimization | Static | Jeju international airport | Yes | 2019 |
| [ | Two | Single | No | Integer linear programming | Static | Eastern China airline | Yes | 2019 |
Table 2
Arrivals and cancellations of flights of Beijing, Qingdao, Shanghai, Hangzhou, Guangzhou and Taipei from August 9th 2019 to August 11th 2019"
| Start point | End point | August 9th | August 10th | August 11th | |||||||||
| [0,6) | [6,12) | [12,18) | [18,24) | [0,6) | [6,12) | [12,18) | [18,24) | [0,6) | [6,12) | [12,18) | [18,24) | ||
| Beijing | Qingdao | (0,0) | (6,0) | (2,0) | (2,2) | (0,0) | (6,0) | (1,1) | (4,2) | (0,0) | (2,7) | (0,2) | (0,8) |
| Shanghai | (0,0) | (17,1) | (3,15) | (0,14) | (0,0) | (0,18) | (1,22) | (0,13) | (0,0) | (17,3) | (18,2) | (11,3) | |
| Hangzhou | (1,0) | (11,0) | (2,4) | (0,8) | (0,1) | (2,9) | (1,7) | (4,4) | (1,0) | (11,1) | (5,1) | (9,0) | |
| Guangzhou | (0,0) | (13,0) | (13,1) | (4,3) | (0,0) | (9,4) | (13,0) | (7,0) | (0,0) | (12,1) | (13,0) | (7,0) | |
| Taipei | (0,0) | (2,2) | (1,0) | (1,0) | (0,0) | (2,0) | (2,0) | (1,0) | (0,0) | (2,0) | (1,0) | (2,0) | |
| Qingdao | Beijing | (0,0) | (4,0) | (4,1) | (2,1) | (0,0) | (4,0) | (5,0) | (3,1) | (0,0) | (2,2) | (1,7) | (0,5) |
| Shanghai | (0,0) | (8,1) | (6,3) | (0,10) | (0,0) | (0,11) | (0,9) | (0,9) | (0,0) | (6,5) | (2,7) | (2,7) | |
| Hangzhou | (0,0) | (3,0) | (3,1) | (0,1) | (0,0) | (0,4) | (0,4) | (0,2) | (0,0) | (2,1) | (1,3) | (0,1) | |
| Guangzhou | (0,0) | (3,0) | (4,0) | (4,0) | (0,0) | (3,0) | (4,0) | (3,2) | (0,0) | (3,0) | (1,3) | (0,5) | |
| Taipei | (0,0) | (0,1) | (0,2) | (0,0) | (0,0) | (0,0) | (1,0) | (0,0) | (0,0) | (0,0) | (1,0) | (0,0) | |
| Shanghai | Beijing | (0,0) | (18,0) | (13,4) | (1,14) | (0,0) | (1,16) | (0,19) | (0,15) | (0,0) | (8,8) | (13,4) | (14,1) |
| Qingdao | (0,0) | (9,2) | (7,1) | (0,11) | (0,0) | (0,11) | (0,8) | (0,10) | (0,0) | (0,12) | (3,4) | (3,7) | |
| Hangzhou | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | |
| Guangzhou | (0,0) | (15,0) | (13,3) | (1,14) | (0,0) | (0,15) | (0,16) | (4,12) | (0,0) | (13,1) | (14,3) | (11,2) | |
| Taipei | (0,0) | (0,5) | (0,8) | (1,3) | (0,0) | (0,3) | (0,8) | (0,4) | (0,0) | (6,0) | (8,0) | (3,0) | |
| Hangzhou | Beijing | (0,0) | (8,0) | (8,1) | (1,9) | (0,0) | (0,8) | (0,8) | (4,6) | (0,0) | (8,0) | (1,8) | (0,10) |
| Qingdao | (0,0) | (5,0) | (0,1) | (1,2) | (0,0) | (0,4) | (0,1) | (0,4) | (0,0) | (1,4) | (0,1) | (2,1) | |
| Shanghai | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | |
| Guangzhou | (2,0) | (7,0) | (9,1) | (1,8) | (0,2) | (0,8) | (0,9) | (2,7) | (1,1) | (5,3) | (9,1) | (8,0) | |
| Taipei | (0,0) | (0,1) | (0,1) | (1,0) | (0,0) | (0,2) | (0,0) | (1,1) | (0,0) | (2,0) | (0,0) | (1,0) | |
| Guangzhou | Beijing | (0,0) | (8,0) | (9,0) | (8,3) | (0,0) | (7,1) | (11,2) | (11,0) | (0,0) | (8,0) | (13,0) | (10,1) |
| Qingdao | (0,0) | (1,4) | (5,0) | (2,0) | (0,0) | (4,0) | (4,1) | (2,1) | (0,0) | (0,4) | (2,3) | (2,1) | |
| Shanghai | (1,1) | (17,0) | (6,11) | (0,10) | (0,2) | (0,17) | (2,15) | (5,7) | (4,1) | (13,9) | (16,1) | (9,1) | |
| Hangzhou | (2,0) | (9,0) | (3,5) | (0,9) | (0,2) | (0,9) | (1,8) | (6,4) | (1,1) | (6,4) | (8,0) | (8,0) | |
| Taipei | (0,0) | (0,1) | (2,1) | (0,0) | (0,0) | (1,0) | (2,0) | (1,0) | (0,0) | (1,0) | (2,0) | (0,0) | |
| Taipei | Beijing | (0,0) | (1,0) | (1,2) | (1,0) | (0,0) | (1,0) | (2,0) | (2,0) | (0,0) | (0,0) | (3,0) | (2,0) |
| Qingdao | (0,0) | (0,1) | (0,2) | (0,0) | (0,0) | (1,0) | (0,0) | (0,0) | (0,0) | (1,0) | (0,0) | (0,0) | |
| Shanghai | (0,0) | (0,4) | (1,11) | (0,0) | (0,0) | (0,2) | (0,2) | (0,1) | (0,0) | (6,0) | (12,0) | (1,0) | |
| Hangzhou | (0,0) | (0,0) | (1,1) | (0,1) | (0,0) | (0,1) | (0,1) | (1,1) | (0,0) | (1,0) | (2,0) | (0,0) | |
| Guangzhou | (0,0) | (0,1) | (3,1) | (0,0) | (0,0) | (0,0) | (3,0) | (1,0) | (0,0) | (1,0) | (2,0) | (0,0) | |
Table 3
Airport location information"
| Airport | Location |
| Beijing Capital Airport | (40.08 N,116.58 E) |
| Beijing Daxing Airport | (39.51 N,116.41 E) |
| Qingdao Liuting Airport | (36.27 N,120.38 E) |
| Shanghai Hongqiao Airport | (31.19 N,121.34 E) |
| Shanghai Pudong Airport | (31.14 N,121.79 E) |
| Hangzhou Xiaoshan Airport | (30.33 N,120.22 E) |
| Guangzhou Baiyun Airport | (23.18 N,113.26 E) |
| Taipei Taoyuan Airport | (25.09 N,121.60 E) |
| Taipei Songshan Airport | (25.06 N,121.55 E) |
Table 4
Location information of Lichma at 0:00, 6:00, 12:00, and 18:00 from August 9th to August 11th"
| Date | Time | Location |
| August 9th | 0:00 | (26.5 N, 123.4 E) |
| 6:00 | (27.0 N, 122.5 E) | |
| 12:00 | (27.5 N, 122.0 E) | |
| 18:00 | (28.3 N, 121.4 E) | |
| August 10th | 0:00 | (28.9 N, 120.8 E) |
| 6:00 | (29.9 N, 120.3 E) | |
| 12:00 | (30.7 N, 120.2 E) | |
| 18:00 | (31.7 N, 120.5 E) | |
| August 11th | 0:00 | (33.6 N, 120.2 E) |
| 6:00 | (34.8 N, 119.9 E) | |
| 12:00 | (35.8 N, 120.2 E) | |
| 18:00 | (36.9 N, 119.7 E) |
Table 5
Influences of the actual location of typhoon Lichma on the arrival and cancellation of flights in Beijing, Qingdao, Shanghai, Hangzhou, Guangzhou and Taipei from August 9th to August 11th"
| Start point | End point | August 9th | August 10th | August 11th | |||||||||||
| [0,6) | [6,12) | [12,18) | [18,24) | [0,6) | [6,12) | [12,18) | [18,24) | [0,6) | [6,12) | [12,18) | [18,24) | ||||
| Beijing | Qingdao | (0,0) | (6,0) | (2,0) | (2,2) | (0,0) | (6,0) | (1,1) | (4,2) | (0,0) | (2,7) | (0,2) | (0,8) | ||
| Shanghai | (0,0) | (17,1) | (3,15) | (0,14) | (0,0) | (0,18) | (1,22) | (0,13) | (0,0) | (17,3) | (18,2) | (11,3) | |||
| Hangzhou | (1,0) | (11,0) | (2,4) | (0,8) | (0,1) | (2,9) | (1,7) | (4,4) | (1,0) | (11,1) | (5,1) | (9,0) | |||
| Guangzhou | (0,0) | (13,0) | (13,1) | (4,3) | (0,0) | (9,4) | (13,0) | (7,0) | (0,0) | (12,1) | (13,0) | (7,0) | |||
| Taipei | (0,0) | (2,2) | (1,0) | (1,0) | (0,0) | (2,0) | (2,0) | (1,0) | (0,0) | (2,0) | (1,0) | (2,0) | |||
| Qingdao | Beijing | (0,0) | (4,0) | (4,1) | (2,1) | (0,0) | (4,0) | (5,0) | (3,1) | (0,0) | (2,2) | (1,7) | (0,5) | ||
| Shanghai | (0,0) | (8,1) | (6,3) | (0,10) | (0,0) | (0,11) | (0,9) | (0,9) | (0,0) | (6,5) | (2,7) | (2,7) | |||
| Hangzhou | (0,0) | (3,0) | (3,1) | (0,1) | (0,0) | (0,4) | (0,4) | (0,2) | (0,0) | (2,1) | (1,3) | (0,1) | |||
| Guangzhou | (0,0) | (3,0) | (4,0) | (4,0) | (0,0) | (3,0) | (4,0) | (3,2) | (0,0) | (3,0) | (1,3) | (0,5) | |||
| Taipei | (0,0) | (0,1) | (0,2) | (0,0) | (0,0) | (0,0) | (1,0) | (0,0) | (0,0) | (0,0) | (1,0) | (0,0) | |||
| Shanghai | Beijing | (0,0) | (18,0) | (13,4) | (1,14) | (0,0) | (1,16) | (0,19) | (0,15) | (0,0) | (8,8) | (13,4) | (14,1) | ||
| Qingdao | (0,0) | (9,2) | (7,1) | (0,11) | (0,0) | (0,11) | (0,8) | (0,10) | (0,0) | (0,12) | (3,4) | (3,7) | |||
| Hangzhou | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | |||
| Guangzhou | (0,0) | (15,0) | (13,3) | (1,14) | (0,0) | (0,15) | (0,16) | (4,12) | (0,0) | (13,1) | (14,3) | (11,2) | |||
| Taipei | (0,0) | (0,5) | (0,8) | (1,3) | (0,0) | (0,3) | (0,8) | (0,4) | (0,0) | (6,0) | (8,0) | (3,0) | |||
| Hangzhou | Beijing | (0,0) | (8,0) | (8,1) | (1,9) | (0,0) | (0,8) | (0,8) | (4,6) | (0,0) | (8,0) | (1,8) | (0,10) | ||
| Qingdao | (0,0) | (5,0) | (0,1) | (1,2) | (0,0) | (0,4) | (0,1) | (0,4) | (0,0) | (1,4) | (0,1) | (2,1) | |||
| Shanghai | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | |||
| Guangzhou | (2,0) | (7,0) | (9,1) | (1,8) | (0,2) | (0,8) | (0,9) | (2,7) | (1,1) | (5,3) | (9,1) | (8,0) | |||
| Taipei | (0,0) | (0,1) | (0,1) | (1,0) | (0,0) | (0,2) | (0,0) | (1,1) | (0,0) | (2,0) | (0,0) | (1,0) | |||
| Guangzhou | Beijing | (0,0) | (8,0) | (9,0) | (8,3) | (0,0) | (7,1) | (11,2) | (11,0) | (0,0) | (8,0) | (13,0) | (10,1) | ||
| Qingdao | (0,0) | (1,4) | (5,0) | (2,0) | (0,0) | (4,0) | (4,1) | (2,1) | (0,0) | (0,4) | (2,3) | (2,1) | |||
| Shanghai | (1,1) | (17,0) | (6,11) | (0,10) | (0,2) | (0,17) | (2,15) | (5,7) | (4,1) | (13,9) | (16,1) | (9,1) | |||
| Hangzhou | (2,0) | (9,0) | (3,5) | (0,9) | (0,2) | (0,9) | (1,8) | (6,4) | (1,1) | (6,4) | (8,0) | (8,0) | |||
| Taipei | (0,0) | (0,1) | (2,1) | (0,0) | (0,0) | (1,0) | (2,0) | (1,0) | (0,0) | (1,0) | (2,0) | (0,0) | |||
| Taipei | Beijing | (0,0) | (1,0) | (1,2) | (1,0) | (0,0) | (1,0) | (2,0) | (2,0) | (0,0) | (0,0) | (3,0) | (2,0) | ||
| Qingdao | (0,0) | (0,1) | (0,2) | (0,0) | (0,0) | (1,0) | (0,0) | (0,0) | (0,0) | (1,0) | (0,0) | (0,0) | |||
| Shanghai | (0,0) | (0,4) | (1,11) | (0,0) | (0,0) | (0,2) | (0,2) | (0,1) | (0,0) | (6,0) | (12,0) | (1,0) | |||
| Hangzhou | (0,0) | (0,0) | (1,1) | (0,1) | (0,0) | (0,1) | (0,1) | (1,1) | (0,0) | (1,0) | (2,0) | (0,0) | |||
| Guangzhou | (0,0) | (0,1) | (3,1) | (0,0) | (0,0) | (0,0) | (3,0) | (1,0) | (0,0) | (1,0) | (2,0) | (0,0) | |||
Table 6
Predicted trajectory location of Lichma at 0:00, 6:00, 12:00, and 18:00 from August 9th to August 11th"
| Date | Time | Predicted trajectory location |
| August 9th | 0:00 | (26.658 N, 124.986 E) |
| 6:00 | (27.007 N, 123.023 E) | |
| 12:00 | (27.905 N, 121.832 E) | |
| 18:00 | (28.424 N, 121.794 E) | |
| August 10th | 0:00 | (29.593 N, 121.144 E) |
| 6:00 | (28.627 N, 119.829 E) | |
| 12:00 | (30.038 N, 1196.68 E) | |
| 18:00 | (307.72 N, 120.367 E) | |
| August 11th | 0:00 | (321.87 N, 120.733 E) |
| 6:00 | (34.672 N, 120.636 E) | |
| 12:00 | (35.968 N, 119.747 E) | |
| 18:00 | (374.26 N, 119.390 E) |
Table 7
Influences of the predicted location of Typhoon Lichma on the arrival and cancellation of flights in Beijing, Qingdao, Shanghai, Hangzhou, Guangzhou and Taipei from August 9th to August 11th"
| Start point | End point | August 9th | August 10th | August 11th | |||||||||||
| [0,6) | [6,12) | [12,18) | [18,24) | [0,6) | [6,12) | [12,18) | [18,24) | [0,6) | [6,12) | [12,18) | [18,24) | ||||
| Beijing | Qingdao | (0,0) | (6,0) | (2,0) | (2,2) | (0,0) | (6,0) | (1,1) | (4,2) | (0,0) | (2,7) | (0,2) | (0,8) | ||
| Shanghai | (0,0) | (17,1) | (3,15) | (0,14) | (0,0) | (0,18) | (1,22) | (0,13) | (0,0) | (17,3) | (18,2) | (11,3) | |||
| Beijing | Hangzhou | (1,0) | (11,0) | (2,4) | (0,8) | (0,1) | (2,9) | (1,7) | (4,4) | (1,0) | (11,1) | (5,1) | (9,0) | ||
| Guangzhou | (0,0) | (13,0) | (13,1) | (4,3) | (0,0) | (9,4) | (13,0) | (7,0) | (0,0) | (12,1) | (13,0) | (7,0) | |||
| Taipei | (0,0) | (2,2) | (1,0) | (1,0) | (0,0) | (2,0) | (2,0) | (1,0) | (0,0) | (2,0) | (1,0) | (2,0) | |||
| Qingdao | Beijing | (0,0) | (4,0) | (4,1) | (2,1) | (0,0) | (4,0) | (5,0) | (3,1) | (0,0) | (2,2) | (1,7) | (0,5) | ||
| Shanghai | (0,0) | (8,1) | (6,3) | (0,10) | (0,0) | (0,11) | (0,9) | (0,9) | (0,0) | (6,5) | (2,7) | (2,7) | |||
| Hangzhou | (0,0) | (3,0) | (3,1) | (0,1) | (0,0) | (0,4) | (0,4) | (0,2) | (0,0) | (2,1) | (1,3) | (0,1) | |||
| Guangzhou | (0,0) | (3,0) | (4,0) | (4,0) | (0,0) | (3,0) | (4,0) | (3,2) | (0,0) | (3,0) | (1,3) | (0,5) | |||
| Taipei | (0,0) | (0,1) | (0,2) | (0,0) | (0,0) | (0,0) | (1,0) | (0,0) | (0,0) | (0,0) | (1,0) | (0,0) | |||
| Shanghai | Beijing | (0,0) | (18,0) | (13,4) | (1,14) | (0,0) | (1,16) | (0,19) | (0,15) | (0,0) | (8,8) | (13,4) | (14,1) | ||
| Qingdao | (0,0) | (9,2) | (7,1) | (0,11) | (0,0) | (0,11) | (0,8) | (0,10) | (0,0) | (0,12) | (3,4) | (3,7) | |||
| Hangzhou | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | |||
| Guangzhou | (0,0) | (15,0) | (13,3) | (1,14) | (0,0) | (0,15) | (0,16) | (4,12) | (0,0) | (13,1) | (14,3) | (11,2) | |||
| Taipei | (0,0) | (0,5) | (0,8) | (1,3) | (0,0) | (0,3) | (0,8) | (0,4) | (0,0) | (6,0) | (8,0) | (3,0) | |||
| Hangzhou | Beijing | (0,0) | (8,0) | (8,1) | (1,9) | (0,0) | (0,8) | (0,8) | (4,6) | (0,0) | (8,0) | (1,8) | (0,10) | ||
| Qingdao | (0,0) | (5,0) | (0,1) | (1,2) | (0,0) | (0,4) | (0,1) | (0,4) | (0,0) | (1,4) | (0,1) | (2,1) | |||
| Shanghai | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | |||
| Guangzhou | (2,0) | (7,0) | (9,1) | (1,8) | (0,2) | (0,8) | (0,9) | (2,7) | (1,1) | (5,3) | (9,1) | (8,0) | |||
| Taipei | (0,0) | (0,1) | (0,1) | (1,0) | (0,0) | (0,2) | (0,0) | (1,1) | (0,0) | (2,0) | (0,0) | (1,0) | |||
| Guangzhou | Beijing | (0,0) | (8,0) | (9,0) | (8,3) | (0,0) | (7,1) | (11,2) | (11,0) | (0,0) | (8,0) | (13,0) | (10,1) | ||
| Qingdao | (0,0) | (1,4) | (5,0) | (2,0) | (0,0) | (4,0) | (4,1) | (2,1) | (0,0) | (0,4) | (2,3) | (2,1) | |||
| Shanghai | (1,1) | (17,0) | (6,11) | (0,10) | (0,2) | (0,17) | (2,15) | (5,7) | (4,1) | (13,9) | (16,1) | (9,1) | |||
| Hangzhou | (2,0) | (9,0) | (3,5) | (0,9) | (0,2) | (0,9) | (1,8) | (6,4) | (1,1) | (6,4) | (8,0) | (8,0) | |||
| Taipei | (0,0) | (0,1) | (2,1) | (0,0) | (0,0) | (1,0) | (2,0) | (1,0) | (0,0) | (1,0) | (2,0) | (0,0) | |||
| Taipei | Beijing | (0,0) | (1,0) | (1,2) | (1,0) | (0,0) | (1,0) | (2,0) | (2,0) | (0,0) | (0,0) | (3,0) | (2,0) | ||
| Qingdao | (0,0) | (0,1) | (0,2) | (0,0) | (0,0) | (1,0) | (0,0) | (0,0) | (0,0) | (1,0) | (0,0) | (0,0) | |||
| Shanghai | (0,0) | (0,4) | (1,11) | (0,0) | (0,0) | (0,2) | (0,2) | (0,1) | (0,0) | (6,0) | (12,0) | (1,0) | |||
| Hangzhou | (0,0) | (0,0) | (1,1) | (0,1) | (0,0) | (0,1) | (0,1) | (1,1) | (0,0) | (1,0) | (2,0) | (0,0) | |||
| Guangzhou | (0,0) | (0,1) | (3,1) | (0,0) | (0,0) | (0,0) | (3,0) | (1,0) | (0,0) | (1,0) | (2,0) | (0,0) | |||
| 1 |
GUI G, LIU F, SUN J L, et al Flight delay prediction based on aviation big data and machine learning. IEEE Trans. on Vehicular Technology, 2020, 69 (1): 140- 150.
doi: 10.1109/TVT.2019.2954094 |
| 2 | WANG H J, SUN J Q, FAN K Relationships between the North Pacific Oscillation and the typhoon/hurricane frequencies. Science in China, 2007, 50 (9): 1409- 1416. |
| 3 |
KOESDWIADY A, SOUA R, KARRAY F Improving traffic flow prediction with weather information in connected cars: a deep learning approach. IEEE Trans. on Vehicular Technology, 2016, 65 (12): 9508- 9517.
doi: 10.1109/TVT.2016.2585575 |
| 4 |
ARAB A, TEKIN E, KHODAEI A, et al System hardening and condition-based maintenance for electric power infrastructure under hurricane effects. IEEE Trans. on Reliability, 2016, 65 (3): 1457- 1470.
doi: 10.1109/TR.2016.2601818 |
| 5 | LI Y H, WANG A J, QIAO L, et al. The impact of typhoon Morakot on the modern sedimentary environment of the mud deposition center off the Zhejiang–Fujian coast, China. Continental Shelf Research, 2012, 37: 92−100. |
| 6 |
GUO T J, LI G S Study on methods to identify the impact factors of economic losses due to typhoon storm surge based on confirmatory factor analysis. Natural Hazards, 2020, 100 (2): 515- 534.
doi: 10.1007/s11069-019-03823-w |
| 7 |
ETANI N Development of a predictive model for on-time arrival flight of airliner by discovering correlation between flight and weather data. Journal of Big Data, 2019, 6 (1): 85- 98.
doi: 10.1186/s40537-019-0251-y |
| 8 |
XU Y, DALMAU R, MELGOSA M, et al A framework for collaborative air traffic flow management minimizing costs for airspace users: enabling trajectory options and flexible pre-tactical delay management. Transportation Research Part B: Methodological, 2020, 134, 229- 255.
doi: 10.1016/j.trb.2020.02.012 |
| 9 | CAO Y K, ZHU C P, WANG Y J, et al. A method of reducing flight delay by exploring internal mechanism of flight delays. Journal of Advanced Transportation, 2019, 2019: 7069380. |
| 10 |
KHAKSAR H, SHEIKHOLESLAMI A A model for incorporating robustness into flight planning. Proceedings. of the Institution of Civil Engineers-Transport, 2018, 171 (5): 275- 285.
doi: 10.1680/jtran.15.00119 |
| 11 |
WEI M, SUN B, WU W, et al A multiple objective optimization model for aircraft arrival and departure scheduling on multiple runways. Mathematical Biosciences and Engineering, 2020, 17 (5): 5545- 5560.
doi: 10.3934/mbe.2020298 |
| 12 | TANG F, LIU S, DONG X Y, et al. Aircraft ground service scheduling problems and partheno-genetic algorithm with hybrid heuristic rule. Proc. of the IEEE 7th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems, 2017: 551−555. |
| 13 |
CECEN R K, CETEK C, KAYA O Aircraft sequencing and scheduling in TMAs under wind direction uncertainties. Aeronautical Journal New Series, 2020, 124 (1282): 1896- 1912.
doi: 10.1017/aer.2020.68 |
| 14 | ABDELGHANY A, ABDELGHANY K, AZADIAN F. Airline flight schedule planning under competition. Computers & Operations Research, 2017, 87: 20−39. |
| 15 | WANG Z J, ZHANG X J. An approach of flight scheduling optimization meet the time conformance monitoring. Proc. of the 13th World Congress on Intelligent Control and Automation, 2018: 1647−1651. |
| 16 | KENAN N, JEBALI A, DIABAT A An integrated flight scheduling and fleet assignment problem under uncertainty. Computers & Operations Research, 2018, 100, 333- 342. |
| 17 |
XIAO M M, CAI K Q, ABBASS H A Hybridized encoding for evolutionary multi-objective optimization of air traffic network flow: a case study on China. Transportation Research, Part E. Logistics and Transportation Review, 2018, 115, 35- 55.
doi: 10.1016/j.tre.2018.04.011 |
| 18 | SAFAK O, CAVUS O, AKTURK M. Multi-stage airline scheduling problem with stochastic passenger demand and non-cruise times. Transportation Research, Part B: Methodological, 2018, 114: 39−67. |
| 19 | TAKEICHI N. Nominal flight time optimization for arrival time scheduling through estimation/resolution of delay accumulation. Transportation Research, Part C: Emerging technologies, 2017, 77: 433−443. |
| 20 | GU J W, TANG X M, HONG W J, et al Real-time optimization of short-term flight profiles to control time of arrival. Aerospace Science & Technology, 2019, 84, 1164- 1174. |
| 21 | NG K K H, LEE C K M, CHAN F T S, et al Robust aircraft sequencing and scheduling problem with arrival/departure delay using the min-max regret approach. Transportation Research Part E: Logistics & Transportation Review, 2017, 106, 115- 136. |
| 22 | GENG X, HU M H Simulated annealing method-based flight schedule optimization in multiairport systems. Mathematical Problems in Engineering, 2020, 2020, 4731918. |
| 23 | YANG Y C, GAO Z C, HE C Stochastic terminal flight arrival and departure scheduling problem under performance-based navigation environment. Transportation Research Part C: Emerging Technologies, 2020, 119, 102735. |
| 24 | HAN Y X, ZHANG J W, HUANG X Q Study of the optimization model for traffic flow. Computers & Industrial Engineering, 2019, 136, 429- 435. |
| 25 | ZHAO D L, TAN Y J, CHENG R, et al. The optimal aircraft scheduling model based on network model. Proc. of the 36th Chinese Control Conference, 2017: 2935−2940. |
| 26 | HONG Y K, CHOI B H, KIM Y Two-stage stochastic programming based on particle swarm optimization for aircraft sequencing and scheduling. IEEE Trans. on Intelligent Transportation Systems, 2018, 20 (4): 1365- 1377. |
| 27 | CHEN X D, YU H, CAO K, et al. Uncertainty-aware flight scheduling for airport throughput and flight delay optimization. IEEE Trans. on Aerospace & Electronic Systems, 2020, 56(2): 853−862. |
| 28 |
ZHANG L, HUANG Z Y, LIU W, et al Weather radar echo prediction method based on convolution neural network and long short-term memory networks for sustainable e-agriculture. Journal of Cleaner Production, 2021, 298, 126776.
doi: 10.1016/j.jclepro.2021.126776 |
| 29 | FEEYO TECHNOLOGY. Flight status. [2021-01-03]. http://www.variflight.com. |
| 30 |
MOHAMED R Deep multimodal fusion: a hybrid approach. International Journal of Computer Vision, 2018, 126, 440- 456.
doi: 10.1007/s11263-017-0997-7 |
| 31 |
QIN W T, TANG J, LU C, et al Trajectory prediction based on long short-term memory network and Kalman filter using hurricanes as an example. Computational Geosciences, 2021, 25, 1005- 1023.
doi: 10.1007/s10596-021-10037-2 |
| 32 |
GREFF K, SRIVASTAVA R K, KOUTNIK J, et al LSTM: a search space odyssey. IEEE Trans. on Neural Networks and Learning Systems, 2017, 28 (10): 2222- 2232.
doi: 10.1109/TNNLS.2016.2582924 |
| 33 |
YU Y, SI X S, HU C H, et al A review of recurrent neural networks: LSTM cells and network architectures. Neural Computation, 2019, 31 (7): 1235- 1270.
doi: 10.1162/neco_a_01199 |
| 34 |
ZHOU X K, HU Y Y, LIANG W, et al Variational LSTM enhanced anomaly detection for industrial big data. IEEE Trans. on Industrial Informatics, 2021, 17 (5): 3469- 3477.
doi: 10.1109/TII.2020.3022432 |
| 35 | YUAN X H, CHEN C, JIANG M, et al Prediction interval of wind power using parameter optimized Beta distribution based LSTM model. Applied Soft Computing, 2019, 82 (2): 105550. |
| 36 |
JIN K H, MCCANN M T, FROUSTEY E, et al Deep convolutional neural network for inverse problems in imaging. IEEE Trans. on Image Processing, 2017, 26 (9): 4509- 4522.
doi: 10.1109/TIP.2017.2713099 |
| 37 |
SARIGUL M, OZYILDIRIM B M AVC M. Differential convolutional neural network. Neural Networks, 2019, 116, 279- 287.
doi: 10.1016/j.neunet.2019.04.025 |
| 38 |
YING X Y, WANG L G, WANG Y Q, et al Deformable 3D convolution for video super-resolution. IEEE Signal Processing Letters, 2020, 27, 1500- 1504.
doi: 10.1109/LSP.2020.3013518 |
| 39 |
CHAIB S, LIU H, GU Y F, et al Deep feature fusion for VHR remote sensing scene classification. IEEE Trans. on Geoscience and Remote Sensing, 2017, 55 (8): 4775- 4787.
doi: 10.1109/TGRS.2017.2700322 |
| 40 |
TANG J, LIU G, PAN Q T A review on representative swarm intelligence algorithms for solving optimization problems: applications and trends. IEEE/CAA Journal of Automatica Sinica, 2021, 8 (10): 1627- 1643.
doi: 10.1109/JAS.2021.1004129 |
| No related articles found! |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||