Journal of Systems Engineering and Electronics ›› 2025, Vol. 36 ›› Issue (2): 397-404.doi: 10.23919/JSEE.2025.000053
• DEFENCE ELECTRONICS TECHNOLOGY • Previous Articles
Honglin WU(), Xueqiong LI(
), Junjie HUANG(
), Ruochun JIN(
), Yuhua TANG(
)
Received:
2023-08-07
Accepted:
2023-08-07
Online:
2025-04-18
Published:
2025-05-20
Contact:
Xueqiong LI
E-mail:honglinwu@nudt.edu.cn;lixueqiong13@nudt.edu.cn;jjhuang@nudt.edu.cn;jinrc@nudt.edu.cn;yhtang62@163.com
About author:
Supported by:
Honglin WU, Xueqiong LI, Junjie HUANG, Ruochun JIN, Yuhua TANG. DDIRNet: robust radar emitter recognition via single domain generalization[J]. Journal of Systems Engineering and Electronics, 2025, 36(2): 397-404.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Different settings for the training and testing datasets with respect to measurement error ${\boldsymbol{ \rho_r }}$, missing pulse rate $ {\boldsymbol{\rho_m }}$, and spurious pulse rate ${\boldsymbol{ \rho_n }}$"
Dataset | |||
0.05 | 0.2 | 0.4 | |
0.02 | 0.05 | 0.2 | |
0.05 | 0.2 | 0.4 | |
0.05 | 0.3 | 0.6 | |
0.1 | 0.5 | 0.8 |
Table 2
Recognition accuracy of different methods on four testing settings"
Method | Average | ||||
A-RNN [ | 86.2 | 93.7 | 75.1 | 50.5 | 76.4 |
ACSE [ | 86.6 | 93.1 | 74.9 | 49.0 | 75.9 |
TCN [ | 87.0 | 94.2 | 74.6 | 52.2 | 77.0 |
CombinedNet [ | 89.7 | 94.2 | 80.4 | 60.5 | 81.2 |
d-SNE [ | 88.9 | 93.1 | 78.6 | 59.7 | 80.1 |
MADA [ | 89.5 | 93.6 | 81.6 | 61.4 | 81.6 |
MetaCNN [ | 90.1 | 93.1 | 82.9 | 64.7 | 82.7 |
DDIRNet | 92.9 | 93.9 | 89.1 | 74.5 | 87.6 |
Table 3
Recognition accuracy of radar emitters with different PRI modulation on $ {\boldsymbol{P_4}} $"
Method | CST | JIT | SLD | WOB | D&S | STG |
A-RNN [ | 40.4 | 40.6 | 59.3 | 57.7 | 53.0 | 50.8 |
ACSE [ | 40.0 | 38.6 | 53.4 | 58.6 | 54.5 | 49.0 |
TCN [ | 46.4 | 48.3 | 56.3 | 54.9 | 58.5 | 51.6 |
CombinedNet [ | 53.1 | 57.6 | 65.2 | 67.0 | 62.7 | 59.8 |
d-SNE [ | 58.5 | 56.1 | 64.6 | 62.0 | 59.2 | 59.2 |
MADA [ | 56.6 | 55.9 | 65.3 | 70.7 | 62.8 | 60.8 |
MetaCNN [ | 59.9 | 58.4 | 69.2 | 74.8 | 66.6 | 63.2 |
DDIRNet | 71.0 | 61.7 | 80.5 | 84.4 | 83.1 | 72.9 |
Table 4
Recognition accuracy of radar emitters with STG PRI but different PRI values on ${\boldsymbol{ P_4}} $"
Method | STG1 | STG2 | STG3 | STG4 | STG5 |
A-RNN [ | 52.8 | 51.1 | 45.1 | 49.1 | 56.1 |
ACSE [ | 50.4 | 53.2 | 49.5 | 47.9 | 45.1 |
TCN [ | 56.3 | 53.6 | 47.0 | 47.0 | 54.8 |
CombinedNet [ | 65.5 | 54.7 | 53.6 | 58.9 | 66.7 |
d-SNE [ | 63.5 | 61.7 | 53.2 | 56.2 | 62.8 |
MADA [ | 62.8 | 60.9 | 61.7 | 57.2 | 63.4 |
MetaCNN [ | 65.9 | 62.4 | 64.5 | 59.8 | 65.1 |
DDIRNet | 78.3 | 75.1 | 66.8 | 69.9 | 74.4 |
1 | WILEY R. ELINT: the interception and analysis of radar signals. Boston: Artech, 2006. |
2 |
KEN’ICHI N, MASAAKI K Improved algorithm for estimating pulse repetition intervals. IEEE Trans. on Aerospace and Electronic Systems, 2000, 36 (2): 407- 421.
doi: 10.1109/7.845217 |
3 | SONG K H, LEE D W, HAN J W, et al Pulse repetition interval modulation recognition using symbolization. Proc. of the International Conference on Digital Image Computing: Techniques and Applications, 2010, 540- 545. |
4 | WILLSON G B Radar classification using a neural network. Proc. of the Defense, Security and Sensing, 1990, 200- 210. |
5 |
FAN T, YU X X, GAN N, et al Transmit-receive design for airborne radar with nonuniform pulse repetition intervals. IEEE Trans. on Aerospace and Electronic Systems, 2021, 57 (6): 4067- 4084.
doi: 10.1109/TAES.2021.3090915 |
6 |
LI X Q, HUANG Z T, WANG F, et al Toward convolutional neural networks on pulse repetition interval modulation recognition. IEEE Communications Letters, 2018, 22 (11): 2286- 2289.
doi: 10.1109/LCOMM.2018.2864725 |
7 |
LI X Q, LIU Z M, HUANG Z T Attention-based radar primodulation recognition with recurrent neural networks. IEEE Access, 2020, 8, 57 426- 57 436.
doi: 10.1109/ACCESS.2020.2982654 |
8 |
QU Q Z, WEI S J, WU Y, et al ACSE networks and autocorrelation features for pri modulation recognition. IEEE Communications Letters, 2020, 24 (8): 1729- 1733, 2020.
doi: 10.1109/LCOMM.2020.2992266 |
9 |
DADGARNIA A, SADEGHI M T Automatic recognition of pulse repetition interval modulation using temporal convolutional network. IET Signal Processing, 2021, 15 (9): 633- 648.
doi: 10.1049/sil2.12069 |
10 |
FENG H C, TANG B, WAN T Radar pulse repetition interval modulation recognition with combined net and domain-adaptive few-shot learning. Digital Signal Processing, 2022, 127, 103562.
doi: 10.1016/j.dsp.2022.103562 |
11 | PENG X B, ANDRYCHOWICZ M, ZAREMBA W, et al Sim-to-real transfer of robotic control with dynamics randomization. Proc. of the IEEE International Conference on Robotics and Automation, 2018, 3803- 3810. |
12 | KHIRODKAR R, YOO D, KITANI K Domain randomization for scene-specific car detection and pose estimation. Proc. of the IEEE Winter Conference on Applications of Computer Vision, 2019, 193- 1940. |
13 | BORLINO F, D’INNOCENTE A, TOMMASI T Domain generalization vs data augmentation: an unbiased perspective. Proc. of the European Conference on Computer Vision Workshops, 2020, : 726- 730. |
14 | LI P, LI D, LI W, et al A simple feature augmentation for domain generalization. Proc. of the IEEE/CVF International Conference on Computer Vision, 2021, 8866- 8875. |
15 | CHEN T L, BAKTASHMOTLAGH M, WANG Z J, et al Center-aware adversarial augmentation for single domain generalization. Proc. of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2023, 4146- 4154. |
16 | XU X, ZHOU X, VENKATESAN R, et al D-SNE: domain adaptation using stochastic neighborhood embedding. Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, 2497- 2506. |
17 | QIAO F C, ZHAO L, PENG X Learning to learn single domain generalization. Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, 12556- 12565. |
18 | WAN C Q, SHEN X, ZHANG Y G, et al Meta convolutional neural networks for single domain generalization. Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, 4672- 4681. |
19 | CHEN J, GAO Z, WU X X, et al Meta-causal learning for single domain generalization. Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, 7683- 7692. |
20 | KIM H, KANG Y, OH C, et al Single domain generalization for LiDAR semantic segmentation. Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, 17587- 17598. |
21 | ZHU W, LU L, XIAO J, et al Localized adversarial domain generalization. Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2022, 7098- 7108. |
22 | ARJOVSKY M, BOTTOU L, GULRA-JANI I, et al. Invariant risk minimization. https://arxiv.org/abs/1907.02893. |
23 | LI L, GAO K, CAO J, et al Progressive domain expansion network for single domain generalization. Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, 224- 233. |
24 | WANG J D, LAN C L, LIU C, et al Generalizing to unseen domains: a survey on domain generalization. IEEE Trans. on Knowledge and Data Engineering, 2022, 35 (8): 8052- 8072. |
25 | CHEN T, KORNBLITH S, NOROUZI M, et al A simple framework for contrastive learning of visual representations. Proc. of the International Conference on Machine Learning, 2020, 1597- 1607. |
26 | LEE K Prototypical contrastive predictive coding. Proc. of the Tenth International Conference on Learning Representations, 2022. |
27 | VASWANI A, SHAZEER N, PARMAR N, et al Attention is all you need. Proc. of the Annual Conference on Neural Information Processing Systems, 2017, 5998- 6008. |
28 | GHORBEL E, GHORBEL M, M'HIRI S, et al Data augmentation based on invariant shape blending for deep learning classification. Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2023, 1- 5. |
29 | ALJUNDI R, PATEL Y, SULC M, et al Contrastive classification and representation learning with probabilistic interpretation. Proc. of the Conference on Artificial Intelligence, 2023, 6675- 6683. |
30 | CHEN S, GONG C, LI J, et al Learning contrastive embedding in low-dimensional space. Proc. of the NeurIPS, 2022. |
[1] | Delanyo Kwame Bensah KULEVOME, Hong WANG, Xuegang WANG. Rolling bearing fault diagnostics based on improved data augmentation and ConvNet [J]. Journal of Systems Engineering and Electronics, 2023, 34(4): 1074-1084. |
[2] | Yunjian ZHANG, Pingping PAN, Zhenmiao DENG, Gang WU. Range-spread target detector via coherent energy accumulation and block thresholding denoising [J]. Journal of Systems Engineering and Electronics, 2021, 32(4): 873-880. |
[3] | Huamin TAO, Qiuqun DENG, Shanzhu XIAO. Reconstruction of time series with missing value using 2D representation-based denoising autoencoder [J]. Journal of Systems Engineering and Electronics, 2020, 31(6): 1087-1096. |
[4] | Meiyan PAN, Jun SUN, Yuhao YANG, Dasheng LI, Sudao XIE, Shengli WANG, Jianjun CHEN. Improved TQWT for marine moving target detection [J]. Journal of Systems Engineering and Electronics, 2020, 31(3): 470-481. |
[5] | Yongbin YU, Nijing YANG, Chenyu YANG, Tashi NYIMA. Memristor bridge-based low pass filter for image processing [J]. Journal of Systems Engineering and Electronics, 2019, 30(3): 448-455. |
[6] | Xiaoyu Li, Jing Jin, Yi Shen, and Yipeng Liu. Noise level estimation method with application to EMD-based signal denoising [J]. Systems Engineering and Electronics, 2016, 27(4): 763-. |
[7] | Mengfan Xue, Xiaoping Li, Yanming Liu, Haiyan Fang, Haifeng Sun, and Lirong Shen. Denoising of X-ray pulsar observed profile using biorthogonal lifting wavelet transform [J]. Systems Engineering and Electronics, 2016, 27(3): 514-523. |
[8] | Weiyu Yu, Jing Tian, and Yonghao Xiao. Color reproduction for noisy CFA data using directional cycle-spinning [J]. Journal of Systems Engineering and Electronics, 2011, 22(3): 528-533. |
[9] | Chunhong Hua, Zhang Ren, and Minhu Zhang. Filtering of long-term dependent fractal noise in fiber optic gyroscope [J]. Journal of Systems Engineering and Electronics, 2010, 21(6): 1041-1045. |
[10] | Shang Zhengguo, Zhao Chunhui & Wan Jian. Application of multi-resolution analysis in sonar image denoising [J]. Journal of Systems Engineering and Electronics, 2008, 19(6): 1082-1089. |
[11] | Zhao Jian, Cao Zhengwen & Zhou Mingquan. SAR image denoising based on wavelet-fractal analysis [J]. Journal of Systems Engineering and Electronics, 2007, 18(1): 45-48. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||