Journal of Systems Engineering and Electronics ›› 2025, Vol. 36 ›› Issue (2): 580-596.doi: 10.23919/JSEE.2025.000039
• CONTROL THEORY AND APPLICATION • Previous Articles
Xinyu LI1,2(), Zhaofa ZHOU1,2,*(
), Zhili ZHANG1,2(
), Zhenjun CHANG1,2(
), Shiwen HAO1,2(
)
Received:
2024-01-11
Online:
2025-04-18
Published:
2025-05-20
Contact:
Zhaofa ZHOU
E-mail:1025997454@qq.com;zzftxy@163.com;zhangzl@126.com;changzj2105@163.com;wenjy70796@163.com
About author:
Supported by:
Xinyu LI, Zhaofa ZHOU, Zhili ZHANG, Zhenjun CHANG, Shiwen HAO. Approach to dynamic error suppression in ground vehicle gravimetry based on external velocity compensation[J]. Journal of Systems Engineering and Electronics, 2025, 36(2): 580-596.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 2
Simulation parameter settings"
Device/Sensor | Characteristic | Accuracy |
Inertial measurement unit (IMU) | Acce bias stability/mGal | 10 |
Acce random walk/mGal | 5 | |
Gyro bias instability/((°)/h) | 0.001 | |
Gyro random walk/( | ||
Sample frequency/Hz | 100 | |
OD | Installation error | [1′;1′;10′] |
Scale factor | kod = | |
Time asynchronism/s | dT = 0.01 | |
Fault type and time/s | Zero setting: 2 097−2 100 Uprush: 6 000−6 005 | |
LDV | Installation error | [1′;1′;10′] |
Scale factor | kldv = 1.002 | |
Time asynchronism/s | dT = 0.01 | |
Fault type and time/s | Zero setting: 4 197−4 200 |
Table 3
Fault detection alarm time results"
Sub-system | Fault type | Fault time/s | State detection alarm time/s | Residual detection alarm time/s | Residual-state detection alarm time/s |
OD | Zero setting | ||||
Uprush | |||||
LDV | Zero setting |
Table 4
Statistics of navigation results of simulation"
Condition | Method | Position error/m/Velocity error/(m/s) | ||
Mean | Max | Standrad | ||
Without fault | SINS/OD | 13.49 / | 42.11 / | 8.70 / |
SINS/LDV | 31.48 / | 68.06 / | 20.15 / | |
FKF | 10.38 / | 36.82 / | 6.50 / | |
With fault | SINS/OD | 20.59 / | 49.63 / | 10.62 / |
SINS/LDV | 48.08 / | 104.15 / | 31.07 / | |
FKF | 14.32 / | 42.72 / | 7.41 / |
Table 5
Performance parameters of main equipment"
Device | Sensor | Characteristic | Accuracy |
Double axis laser SINS | Gyroscopes | Bias instability | |
Random walk | |||
Accelerometer | Bias stability | 10 μg/day | |
Random walk | 5 μg/ | ||
Gravimeter | Gravity sensor | Static output | ≤ 0.01 mGal |
Temperature control | ≤ 0.001℃ | ||
OD | Pulse counter | Counting error | 1×10−4 |
Velocity error | 0.001 1 m/s | ||
Barometer | Pressure sensor | Resolution | 5 Pa |
Height error | 2.5 m | ||
LDV | Dual optical drive | Velocity error | ≤ 1‰ |
Location devices | Horizontal error | 5 cm | |
Height error | 0.1 m | ||
GPS | Velocity measuring devices | Horizontal error | 0.01 m/s |
Height error | 0.02 m/s |
Table 6
Statistics of gravity measurement results and error suppression mGal"
Survey lines | Metric | Accuracy | ||
Before error suppression | After error suppression | Percentage/% | ||
Line 1-1 | Internal coincidence | 2.61 | 1.14 | 56.3 |
Line 1-2 | 3.24 | 0.84 | 74.1 | |
Line 1-3 | 2.98 | 0.53 | 82.2 | |
Line 1-4 | 1.83 | 0.57 | 68.9 | |
Line 1 | 2.72 | 0.81 | 70.2 | |
Line 1-1 | External coincidence | 3.10 | 0.92 | 70.3 |
Line 1-2 | 4.07 | 2.03 | 50.1 | |
Line 1-3 | 3.32 | 1.54 | 53.6 | |
Line 1-4 | 2.17 | 1.93 | 11.1 | |
Line 1 | 3.23 | 1.66 | 48.6 | |
Line 2-1 | Internal coincidence | 4.92 | 1.27 | 74.2 |
Line 2-2 | 4.94 | 1.33 | 73.1 | |
Line 2 | 4.93 | 1.30 | 73.6 | |
Line 3-1 | Internal coincidence | 8.61 | 1.92 | 77.7 |
Line 3-2 | 8.93 | 1.96 | 78.1 | |
Line 3 | 8.77 | 1.94 | 77.9 |
1 | STRAY B, LAMB A, KAUSHIK A, et al Quantum sensing for gravity cartography. Nature, 2022, 602 (1): 590- 594. |
2 |
ZHU Y Q, YANG X, LIU F, et al Progress and prospect of the time-varying gravity in earthquake prediction in the Chinese mainland. Frontiers in Earth Science, 2023, 11, 1124573.
doi: 10.3389/feart.2023.1124573 |
3 | SUN H P, SUN W K, SHEN W B, et al Research progress of Earth’s gravity field and its application in geosciences. Advances in Earth Science, 2021, 36 (5): 445- 460. |
4 |
HAN Y R, WANG B, DENG Z H, et al Point mass filter based matching algorithm in gravity aided underwater navigation. Journal of Systems Engineering and Electronics, 2018, 29 (1): 152- 159.
doi: 10.21629/JSEE.2018.01.15 |
5 |
CARRIER A, NAWRATIL C B, LUPI M Affordable gravity prospection calibrated on improved time-to-depth conversion of old seismic profiles for exploration of geothermal resources. Geothermics, 2020, 86, 101800.
doi: 10.1016/j.geothermics.2020.101800 |
6 | HAO S W, ZHANG Z L, ZHOU Z F, et al Influence of gravity disturbance on initial alignment of inertial navigation system. Systems Engineering and Electronics, 2020, 42 (7): 1575- 1581. |
7 | HAO S W, ZHANG Z L, ZHOU Z F, et al Calculation method for deflection of the vertical based on path gravity anomaly compensation. Measurement Science and Technology, 2023, 34 (3): 12- 23. |
8 | LI X P, JEKELI C Ground-vehicle INS/ GPS vector gravimetry. Geophysics, 2008, 73 (2): 1- 10. |
9 |
YU R H, WU M P, ZHANG K D, et al A new method for land vehicle gravimetry using SINS/VEL. Sensors, 2017, 17 (4): 766- 777.
doi: 10.3390/s17040766 |
10 | WEI G, YANG Z K, GAO C F, et al Strapdown vehicle autonomous gravimetry method based on two dimensional laser Doppler velocimeter. Infrared and Laser Engineering, 2023, 52 (6): 339- 346. |
11 | CAI S K, CAO J L, YU R H, et al Dynamic error elimination method for strapdown dynamic gravimetry. IEEE Geoscience and Remote Sensing Letters, 2022, 19 (1): 8027405. |
12 | HUANG M T, CHEN X, DENG K L, et al A general model for compensating remainder dynamic environment effect on marine and airborne gravimetry. Acta Geodaetica et Cartographica Sinica, 2020, 49 (2): 135- 146. |
13 | PAN G W, YU R H, XIONG Z M, et al Strapdown vehicle gravimetry nonmodel error compensation method. IEEE Geoscience and Remote Sensing Letters, 2023, 20 (1): 7500405. |
14 | ZOU X L, CAI S K, WU M P, et al Dynamic errors separation of airborne gravimetry based on empirical mode decomposition. Geophysical and Geo-chemical Exploration, 2016, 40 (6): 1217- 1221. |
15 | ZHAO X M, GAO W, LI D, et al Realization and application of inertial navigation platform gravity measurement technology. Navigation Positioning and Timing, 2020, 7 (2): 11- 17. |
16 | CAI T J, YAN Y, WANG X Y Kalman filtering of strapdown airborne gravity measurement. Piezoelectrics and Acoustooptics, 2019, 41 (3): 436- 439. |
17 | ZHENG W, ZHANG G B Application research on adaptive Kalman filtering for airborne gravity anomaly determination. Chinese Journal of Geophysics, 2016, 59 (4): 1275- 1283. |
18 | CHA F, TAN F J, LI F, et al A fast damping algorithm for INS with external velocity reference. Geomatics and Information Science of Wuhan University, 2019, 44 (3): 398- 404. |
19 | ZHANG J, LU J L, XIN Y K, et al. Horizon alignment method introducing external velocity for laser gyro compass. Ship Electronic Engineering, 2016, 36(12): 61−66. |
20 | ZHAO L, LI J S, CHENG J H Double-filter external damping strapdown inertial navigation algorithm. Journal of Harbin Institute of Technology, 2018, 50 (3): 178- 184. |
21 | LI D Y, TAN F J, HUANG C F, et al Inertial navigation autonomous damping algorithm based on LM algorithm. Transducer and Microsystem Technologies, 2023, 42 (6): 112- 115. |
22 |
WU P F, WU L, BAO L F, et al A marine gravimeter based on electromagnetic damping and its tests in the South China Sea. Journal of Oceanology and Limnology, 2023, 41 (2): 792- 803.
doi: 10.1007/s00343-022-2110-5 |
23 |
WEI S, DAN G, CHEN H Altitude data fusion utilising differential measurement and complementary filter. IET Science, Measurement and Technology, 2016, 10 (8): 874- 879.
doi: 10.1049/iet-smt.2016.0118 |
24 |
KWON J H, JEKELI C The effect of stochastic gravity models in airborne vector gravimetry. Geophysics, 2002, 67 (3): 770- 776.
doi: 10.1190/1.1484520 |
25 | FANG G Q, WU H Y The damp inertial navigation system under the outside speed compensation. Ship Science and Technology, 2013, 35 (5): 62- 64. |
26 | TAN F J, LI A, XU J N, et al Horizontal inner damping method with continuously adjustable parameter for inertial navigation system. Journal of Chinese Inertial Technology, 2011, 19 (3): 290- 293. |
27 |
XIONG Z M, CAO J L, LIAO K X, et al A new method for underwater dynamic gravimetry based on multisensory integrated navigation. Geophysics, 2020, 85 (3): 69- 80.
doi: 10.1190/geo2019-0006.1 |
28 | CARLSON N A Federated filter for fault-tolerant integrated navigation systems. IEEE Position Location and Navigation Symposium, 1988, 88 (7): 110- 119. |
29 |
YANG B, XUE L, FAN H D, et al SINS/Odometer/Doppler radar high-precision integrated navigation method for land vehicle. IEEE Sensors Journal, 2021, 21 (13): 15090- 15100.
doi: 10.1109/JSEN.2021.3071181 |
30 |
YANG B, LIU F, XUE L, et al Fault-tolerant SINS/Doppler radar/odometer integrated navigation method based on two-stage fault detection structure. Entropy, 2023, 25 (10): 1412- 1430.
doi: 10.3390/e25101412 |
[1] | Hui Sun, Jianguo Yan, Yaohong Qu, and Jie Ren. Sensor fault-tolerant observer applied in UAV anti-skid braking control under control input constraint [J]. Systems Engineering and Electronics, 2017, 28(1): 126-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||