
Journal of Systems Engineering and Electronics ›› 2025, Vol. 36 ›› Issue (6): 1465-1476.doi: 10.23919/JSEE.2025.000003
• DEFENCE ELECTRONICS TECHNOLOGY • Previous Articles
Chengzeng CHEN1,2,3(
), Dan LIU2,3(
), Jiandong NIU2(
), Xiaolun JIANG3(
), Yaobing LU2(
), Xiaojian XU1,*(
)
Received:2024-08-23
Accepted:2024-12-04
Online:2025-12-18
Published:2026-01-07
Contact:
Xiaojian XU
E-mail:chenchengzeng66@163.com;liudan_nicole@263.net;niujiandong588@sina.com;jiang-xiaolun@qq.com;luyaobing65@163.com;xiaojianxu@buaa.edu.cn
About author:CHEN Chengzeng was born in 1987. He received his M.S. degree from Xidian University in 2013. He is currently working toward his Ph.D. degree in Beihang University. His research interests are radar signal processing and radar imaging. E-mail: chenchengzeng66@163.comChengzeng CHEN, Dan LIU, Jiandong NIU, Xiaolun JIANG, Yaobing LU, Xiaojian XU. Nonlinear size constrained attitude estimation for space objects from ISAR image sequences[J]. Journal of Systems Engineering and Electronics, 2025, 36(6): 1465-1476.
Table 1
Main parameters of the satellite"
| Parameter | Value |
| Inclination/(°) | 97 |
| Right ascension of ascending | |
| Eccentricity | |
| Argument of perigee | |
| Mean anomaly | |
| Apogee height/km | 476 |
| Perigee height/km | 473 |
| Revolutions per day | 15.3 |
| Main body’s size/m | 8 |
| Solar panel’s size/m | 16 |
| Simulation date | 2023/9/6 |
Table 4
Attitude estimation results of satellite at pose I (°)"
| Parameter | True value | Proposed method with NSC | PSO method | JRS-BFGS method | |||||
| Estimated | Error | Estimated | Error | Estimated | Error | ||||
| −90 | −85.20 | 4.8 | −79.95 | 10.05 | −79.09 | 10.91 | |||
| 0 | −0.15 | −0.15 | −0.98 | −0.98 | −1.43 | −1.43 | |||
| 90 | 90.25 | 0.25 | 91.27 | 1.27 | 95.29 | 5.29 | |||
Table 5
Attitude estimation results of satellite at pose II (°)"
| Parameter | True value | Proposed method with NSC | PSO method | JRS-BFGS method | |||||
| Estimated | Error | Estimated | Error | Estimated | Error | ||||
| 26 | 25.35 | −0.65 | 23.14 | −2.86 | 14.50 | −11.50 | |||
| 0 | 1.04 | 1.04 | 2.10 | 2.10 | 3.39 | 3.39 | |||
| 90 | 89.03 | −0.97 | 87.85 | −2.15 | 87.50 | −2.50 | |||
| 1 | GHOBADI M, SINGLA P, ESFAHANI T E. Robust attitude estimation from uncertain observations of inertial sensors using covariance inflated multiplicative extended Kalman filter. IEEE Trans. on Instrumentation & Measurement, 2018, 67(1): 209–217. |
| 2 | CANDAN B, SOKEN H E Robust attitude estimation using IMU-only measurements. IEEE Trans. on Instrumentation and Measurement, 2021, 70, 9512309. |
| 3 |
CANDAN B, SOKEN H E Robust attitude estimation using magnetic and inertial sensors. IFAC-PapersOnLine, 2023, 56 (2): 4502- 4507.
doi: 10.1016/j.ifacol.2023.10.941 |
| 4 | SEGAL S, CARMI A, GURFIL P Stereovision-based estimation of relative dynamics between noncooperative satellites: theory and experiments. IEEE Trans. on Control Systems Technology, 2013, 22 (2): 568- 584. |
| 5 |
SHARMA S, D’AMICO S Neural network-based pose estimation for noncooperative spacecraft rendezvous. IEEE Trans. on Aerospace and Electronic Systems, 2020, 56 (6): 4638- 4658.
doi: 10.1109/TAES.2020.2999148 |
| 6 | PENG J Q, XU W F, YAN L, et al A pose measurement method of a space noncooperative target based on maximum outer contour recognition. IEEE Trans. on Aerospace and Electronic Systems, 2019, 56 (1): 512- 526. |
| 7 | XU S M, SHAN L, HAO Y Y, et al. Accurate 3D geometry measurement for non-cooperative spacecraft with an unfocused light-field camera. Journal of Systems Engineering and Electronics, 2022, 33(1): 11–21. |
| 8 | MIT Lincoln Laboratory. Haystack ultrawideband satellite imaging radar. https://archive.ll.mit.edu/publications/technotes/HUSIR.html. |
| 9 |
ROSEBROCK J Absolute attitude from monostatic radar measurements of rotating objects. IEEE Trans. on Geo Science and Remote Sensing, 2011, 49 (10): 3737- 3744.
doi: 10.1109/TGRS.2011.2159727 |
| 10 | LEMMENS S, KRAG H, ROSEBROCK J, et al. Radar mappings for attitude analysis of objects in orbit. Proc. of the 6th European Conference on Space Debris, 2013: 20–24. |
| 11 | LEMMENS S, KRAG H. Sensitivity of automated attitude determination form ISAR radar mappings. Proc. of the Advanced Maui Optical and Space Surveillance Technologies Conference, 2013: 1–12. |
| 12 | JIANG L B, ZHENG S Y, YANG Q W, et al A modified OMP method for multi-orbit three dimensional ISAR imaging of the space target. Journal of Systems Engineering and Electronics, 2023, 34 (4): 879- 893. |
| 13 |
DAI Y, LIU D, LI C M, et al Robust dual-channel correlation algorithm for complex weak target detection with wideband radar. Journal of Systems Engineering and Electronics, 2023, 34 (5): 1130- 1146.
doi: 10.23919/JSEE.2023.000138 |
| 14 |
ZHONG W J, WANG J S, JI W J, et al The attitude estimation of three-axis stabilized satellites using hybrid particle swarm optimization combined with radar cross section precise prediction. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2016, 230 (4): 713- 725.
doi: 10.1177/0954410015596178 |
| 15 |
LYU J T, ZHONG W J, LIU H, et al Novel approach to determine spinning satellites’ attitude by RCS measurements. Journal of Aerospace Engineering, 2021, 34 (4): 04021023.
doi: 10.1061/(ASCE)AS.1943-5525.0001253 |
| 16 | AVILÉS M, MARGARIT G, CANETRI M, et al. Automated attitude estimation from ISAR images. Proc. of the 7th European Conference on Space Debris, 2017: 1–13. |
| 17 |
ZHOU Y J, WEI S P, ZHANG L, et al Dynamic estimation of spin satellite from the single-station ISAR image sequence with the hidden Markov model. IEEE Trans. on Aerospace and Electronic Systems, 2022, 58 (5): 4626- 4638.
doi: 10.1109/TAES.2022.3164015 |
| 18 | ZHOU Y J, ZHANG L, CAO Y H, et al Attitude estimation and geometry reconstruction of satellite targets based on ISAR image sequence interpretation. IEEE Trans. on Aerospace and Electronic Systems, 2018, 55 (4): 1698- 1711. |
| 19 |
CUI X C, FU W Y, SU Y, et al Space target attitude estimation based on projection matrix and linear structure. IEEE Signal Processing Letters, 2023, 30, 918- 922.
doi: 10.1109/LSP.2023.3294015 |
| 20 |
ZHOU Y J, ZHANG L, CAO Y H Attitude estimation for space targets by exploiting the quadratic phase coefficients of inverse synthetic aperture radar imagery. IEEE Trans. on Geoscience and Remote Sensing, 2019, 57 (6): 3858- 3872.
doi: 10.1109/TGRS.2018.2888631 |
| 21 | ZHOU Y J, ZHANG L, CAO Y H, et al Optical-and-radar image fusion for dynamic estimation of spin satellites. IEEE Trans. on Image Processing, 2019, 29, 2963- 2976. |
| 22 | DU R Z, LIU L, BAI X R, et al Instantaneous attitude estimation of spacecraft utilizing joint optical-and-ISAR observation. IEEE Trans. on Geoscience and Remote Sensing, 2022, 60, 5112114. |
| 23 | WANG J D, LI Y C, DU L, et al Joint estimation of satellite attitude and size based on ISAR image interpretation and parametric optimization. IEEE Trans. on Geoscience and Remote Sensing, 2021, 60, 5103817. |
| 24 | WANG J D, LI Y, SONG M, et al Joint estimation of absolute attitude and size for satellite targets based on multi-feature fusion of single ISAR image. IEEE Trans. on Geoscience and Remote Sensing, 2022, 60, 5111720. |
| 25 |
KOU P, LIU Y X, ZHONG W J, et al Axial attitude estimation of spacecraft in orbit based on ISAR image sequence. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 7246- 7258.
doi: 10.1109/JSTARS.2021.3096859 |
| 26 |
UGRAY Z, LASDON L, PLUMMER J, et al Scatter search and local NLP solvers: a multistart framework for global optimization. INFORMS Journal on Computing, 2007, 19 (3): 328- 340.
doi: 10.1287/ijoc.1060.0175 |
| 27 | NOCEDAL J, WRIGHT S J. Numerical optimization. New York: Springer, 1999: 192–202. |
| 28 |
HAO B J, LI Z BFGS quasi-Newton location algorithm using TDOAs and GROAs. Journal of Systems Engineering and Electronics, 2013, 24 (3): 341- 348.
doi: 10.1109/JSEE.2013.00043 |
| 29 |
PELEG S, PORAT B The Cramer-Rao lower bound for signals with constant amplitude and polynomial phase. IEEE Trans. on Signal Processing, 1991, 39 (3): 749- 752.
doi: 10.1109/78.80864 |
| 30 |
LU Z K, LIU S H, JI Q, et al An efficient method for parameter estimation and separation of multi-component LFM signals. Signal Processing, 2023, 207, 108964.
doi: 10.1016/j.sigpro.2023.108964 |
| 31 | CHANG Y C. N-dimension golden section search: its variants and limitations. Proc. of the 2nd International Conference on Biomedical Engineering and Informatics, 2009. DOI: 10.1109/BMEI.2009.5304779. |
| 32 | COHEN A. Stepsize analysis for descent methods. Proc. of the IEEE Conference on Decision and Control, 1973: 417–421. |
| 33 |
GARCIA-FERNANDEZ A F, YESTE-OJEDA O A, GRAJAL J Facet model of moving targets for ISAR imaging and radar back-scattering simulation. IEEE Trans. on Aerospace and Electronic Systems, 2010, 46 (3): 1455- 1467.
doi: 10.1109/TAES.2010.5545200 |
| 34 |
WANG J F, KASILINGAM D Global range alignment for ISAR. IEEE Trans. on Aerospace and Electronic Systems, 2003, 39 (1): 351- 357.
doi: 10.1109/TAES.2003.1188917 |
| 35 | CAI J J, MARTORELLA M, CHANG S Q, et al Efficient nonparametric ISAR autofocus algorithm based on contrast maximization and Newton’s method. IEEE Sensors Journal, 2020, 21 (4): 4474- 4487. |
| 36 |
WANG Y, ZHOU X Y, LU X F, et al An approach of motion compensation and ISAR imaging for micro-motion targets. Journal of Systems Engineering and Electronics, 2021, 32 (1): 68- 80.
doi: 10.23919/JSEE.2021.000008 |
| 37 |
SHI H Y, LIU Y, GUO J W, et al ISAR autofocus imaging algorithm for maneuvering targets based on deep learning and Keystone transform. Journal of Systems Engineering and Electronics, 2020, 31 (6): 1178- 1185.
doi: 10.23919/JSEE.2020.000090 |
| [1] | Xinjie MA, Wei QI, Kaijun CHE, Gang WU. Parameter estimation of LFM signals based on time reversal [J]. Journal of Systems Engineering and Electronics, 2023, 34(3): 674-681. |
| [2] | Haoran SHI, Faxing LU, Hangyu WANG, Junfei XU. Optimal observation configuration of UAVs based on angle and range measurements and cooperative target tracking in three-dimensional space [J]. Journal of Systems Engineering and Electronics, 2020, 31(5): 996-1008. |
| [3] | Wanchun Li, Wanyi Zhang, and Liping Li. Using self-location to calibrate the errors of observer positions for source localization [J]. Journal of Systems Engineering and Electronics, 2014, 25(2): 194-202. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||