Journal of Systems Engineering and Electronics ›› 2025, Vol. 36 ›› Issue (1): 24-36.doi: 10.23919/JSEE.2024.000079
• ELECTRONICS TECHNOLOGY • Previous Articles
Anjing CUI1,2(), Daojing LI1,*(
), Jiang WU1,2(
), Jinghan GAO1,2(
), Kai ZHOU1,2(
), Chufeng HU3(
), Shumei WU1(
), Danni SHI4(
), Guang LI4(
)
Received:
2023-04-09
Accepted:
2023-11-09
Online:
2025-02-18
Published:
2025-03-18
Contact:
Daojing LI
E-mail:cuianjing20@mails.ucas.ac.cn;lidj@mail.ie.ac.cn;15074736402@163.com;gaojinghan20@mails.ucas.ac.cn;zk_6810@163.com;huchufeng@nwpu.edu.cn;wusm@aircas.ac.cn;837974747@qq.com;18613819820@163.com
About author:
Supported by:
Anjing CUI, Daojing LI, Jiang WU, Jinghan GAO, Kai ZHOU, Chufeng HU, Shumei WU, Danni SHI, Guang LI. Low-frequency signal generation in space based on high-frequency electric-antenna array and Doppler effect[J]. Journal of Systems Engineering and Electronics, 2025, 36(1): 24-36.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Simulation parameters of previous work"
Simulation parameter | LF signal | VLF signal |
Length of the array/m | 105 | 120 |
Number of arrays | 1 | 9 |
Equivalent spacing of RE/m | 0.15 | 0.167 |
Distance/km | 30 | 30 |
Number of REs | 700 | 729 |
Carrier frequency of RE signal/GHz | 1 | 0.1 |
Pulse width of RE signal/μs | 0.73 | 0.115 |
Number of RE signal cycles | 1 | 600 |
Duty cycle of RE signal/% | / | 50 |
Phase-modulation frequency of RE signal/MHz | 39 | / |
Phase stepping of RE signal | / | |
Frequency of composite signal/MHz | 400 | 0.01 |
Pulse width of composite signal/ | 1.46 | 138.59 |
Sampling frequency/GHz | 2 | 0.5 |
PSLR/dB | −4.28 | −13.34 |
ISLR/dB | −14.93 | −8.77 |
Energy ratio of LF/VLF signal in composite signal/% | 96.88 | 88.29 |
EPUR/% | 19.02 | 14.01 |
Table 2
Parameters of experimental equipment"
Parameter | Value |
Frequency range of REs/MHz | 148−175 |
Maximum gain of REs/dBi | 3 |
Power capacity of REs/W | 10 |
Input impedance of REs/Ω | 50 |
RE direction of polarization | Vertical polarization |
Radiation direction of REs | Omnidirectional |
Standing-wave ratio of REs | Superior to 2 (156 MHz) |
Center frequency of REs/MHz | 156 |
Wavelength of the RE signal/m | 1.923 |
Spacing of REs/m | 0.24 |
Attenuation of cables/(dB·m−1) | <0.3 |
Shielding effectiveness of cables/dB | >60 |
Frequency range of cables/ MHz | 100− |
Medium of cables | Poly tetra fluoro ethylene |
Relative dielectric constant of cables | 2.04 |
Isolation of power splitters/dB | >18 |
Standing-wave ratio of power splitters | <1.5 |
Frequency range of power splitters/MHz | 5− |
Carrier frequency of RE signal/MHz | 156 |
Carrier wavelength of RE signal/m | 1.92 |
Spacing of RE signal/m | 0.24 |
Pulse width of RE signal/μs | 0.074 |
Number of RE signal pulse | 13 |
Repetition period of digital module/μs | 3 |
Carrier period of RE signal/ns | 6.41 |
Ratio of equivalent radar speed and speed of light | 0.246 |
Length of array (short/ long array)/m | 1.68/ 15.12 |
Period of RE signal/μs | 0.148 |
Sample frequency of digital module/GHz | 1 |
Frequency of composite signal/ GHz | 121.35 |
Table 4
Transmission delay performance test"
Device tested (Channel 0) | Delay relative to channel 1/ns | Transmission delay/ns | Delay difference/ns |
Without cable | 13.333 | 0 | − |
8 m cable | 24.778 | 11.445 | − |
8 m cable and 0.20 m cable | 27.079 | 13.746 | − |
8 m cable and 0.88 m cable | 30.225 | 16.892 | 3.146 |
8 m cable and 1.57 m cable | 33.371 | 20.038 | 3.146 |
8 m cable and 2.25 m cable | 36.742 | 23.409 | 3.371 |
8 m cable and 2.94 m cable | 40.000 | 26.667 | 3.258 |
8 m cable and 3.62 m cable | 43.371 | 30.038 | 3.371 |
8 m cable and 4.30 m cable | 46.405 | 33.072 | 3.034 |
8 m cable and 4.99 m cable | 49.888 | 36.555 | 3.483 |
1 |
KUSCHEL H, HECKENBACH J, MULLER S, et al Countering stealth with passive, multi-static, low frequency radars. IEEE Aerospace and Electronic Systems Magazine, 2010, 25 (9): 11- 17.
doi: 10.1109/MAES.2010.5592986 |
2 |
WANG X, GONG H X, ZHANG S, et al Efficient RCS computation over a broad frequency band using subdomain MoM and Chebyshev approximation technique. IEEE Access, 2020, 8, 33522- 33531.
doi: 10.1109/ACCESS.2020.2974070 |
3 | ZHOU Z M, HUANG X T Penetration performance analysis of VHF/UHF ultra-wideband synthetic aperture radar. Systems Engineering and Electronics, 2003, 25 (11): 1336- 1340. |
4 |
LU J X, ZHOU X J, LIU Y, et al The extremely low frequency engineering project for underground exploration. Engineering, 2022, 10, 13- 20.
doi: 10.1016/j.eng.2021.12.003 |
5 | REN Y, LIN H, TIAN Y Z A study on mechanical antenna based on rotating magnetic dipole. Modern Radar, 2020, 42 (4): 68- 71, 76. |
6 | HAO Z Y, WANG Y X, ZHOU Q, et al System design and verification of rotating-magnet based mechanical low-frequency antenna. Journal of National University of Defense Technology, 2023, 45 (1): 67- 73. |
7 | CUI Y, WU M, SONG X, et al Research progress of small low-frequency transmitting antenna. Acta Physica Sinica, 2020, 69 (20): 171- 183. |
8 |
NAN T X, LIN H, GAO Y, et al Acoustically actuated ultra-compact NEMS magnetoelectric antennas. Nature Communications, 2017, 8, 296.
doi: 10.1038/s41467-017-00343-8 |
9 |
BURCH H C, GARRAUD A, MITCHELL M F, et al Experimental generation of ELF radio signals using a rotating magnet. IEEE Trans. on Antennas and Propagation, 2018, 66 (11): 6265- 6272.
doi: 10.1109/TAP.2018.2869205 |
10 |
BICKFORD J A, DUWEL A E, WEINBERG M S, et al Performance of electrically small conventional and mechanical antennas. IEEE Trans. on Antennas and Propagation, 2019, 67 (4): 2209- 2223.
doi: 10.1109/TAP.2019.2893329 |
11 | GONG S H, LIU Y, LIU Y A. Rotating-magnet based mechanical antenna (RMBMA) for ELF-ULF wireless communication. Progress in Electromagnetics Research M, 2018, 72: 125−133. |
12 | PRASAD M N S, SELVIN S, TOK R U, et al. Directly modulated spinning magnet arrays for ULF communications. Proc. of the IEEE Radio and Wireless Symposium, 2018: 171−173. |
13 |
FAWOLE O C, TABIB-AZAR M An electromechanically modulated permanent magnet antenna for wireless communication in harsh electromagnetic environments. IEEE Trans. on Antennas and Propagation, 2017, 65 (12): 6927- 6936.
doi: 10.1109/TAP.2017.2761555 |
14 |
M N S P, TOK R U, FEREIDOONY F, et al Magnetic pendulum arrays for efficient ULF transmission. Scientific Reports, 2019, 9, 13220.
doi: 10.1038/s41598-019-49341-4 |
15 | SELVIN S, PRASAD S, HUANG Y K, et al. Spinning magnet antenna for VLF transmitting. Proc. of the IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2017: 1477−1478. |
16 | BARANI N, SARABANDI K. A frequency multiplier and phase modulation approach for mechanical antennas operating at super low frequency (SLF) band. Proc. of the IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, 2019: 2169−2170. |
17 | REN W C, CHEN S, GAO Y, et al Progress and technical framework of the BAW mediated magnetoelectric antenna. Chinese Journal of Radio Science, 2021, 36 (4): 491- 497, 510. |
18 |
BARANI N, KASHANIANFARD M, SARABANDI K A mechanical antenna with frequency multiplication and phase modulation capability. IEEE Trans. on Antennas and Propagation, 2021, 69 (7): 3726- 3739.
doi: 10.1109/TAP.2020.3044385 |
19 | CUI A J, LI D J, ZHOU K, et al On method of composing low frequency signals based on array structures. Acta Physica Sinica, 2020, 69 (19): 162- 173. |
20 |
RAO P H, SUJITHA S, SELVAN K T A multiband, mutipolarization shared-aperture antenna: design and evaluation. IEEE Antennas and Propagation Magazine, 2017, 59 (4): 26- 37.
doi: 10.1109/MAP.2017.2706654 |
21 | CUI A J, LI D J, ZHOU K, et al Research on the method of composing very low frequency signals based on the staggered array. Journal of Radars, 2020, 9 (5): 925- 938. |
22 |
KUO C H, MOGHADDAM M Electromagnetic scattering from a buried cylinder in layered media with rough interfaces. IEEE Trans. on Antennas and Propagation, 2006, 54 (8): 2392- 2401.
doi: 10.1109/TAP.2006.879208 |
23 | WALKER J, HALLIDAY D, RESNICK R. Fundamentals of physics. Hoboken: Wiley, 2014. |
24 | WEI Z Q. Synthetic aperture radar satellite. Beijing: China Science Publishing & Media Ltd, 2001. (in Chinese) |
25 | SKOLNIK M. Radar handbook. McGraw-Hill: McGraw-Hill, 2008. |
26 | CZUBA K, SIKORA D. Phase drift versus temperature measurements of coaxial cables. Proc. of the 18th International Conference on Microwaves, Radar and Wireless Communications, 2010. |
27 |
CHANG H C Phase noise in self-injection-locked oscillators-theory and experiment. IEEE Trans. on Microwave Theory and Techniques, 2003, 51 (9): 1994- 1999.
doi: 10.1109/TMTT.2003.815872 |
28 | GE Y, HUANG H, YUAN H Phase characteristics of coaxial cable caused by temperature and mechanical bending. Journal of Terahertz Science and Electronic Information Technology, 2019, 17 (4): 621- 626. |
29 |
ZAHEDI A, ABBASI ARAND B GA-based approach to phase compensation of large phased array antennas. Journal of Systems Engineering and Electronics, 2018, 29 (4): 723- 730.
doi: 10.21629/JSEE.2018.04.07 |
30 |
ZHENG S Y, CHAN W S Differential RF phase shifter with harmonic suppression. IEEE Trans. on Industrial Electronics, 2014, 61 (6): 2891- 2899.
doi: 10.1109/TIE.2013.2273478 |
31 |
LU C J, SHENG W X, HAN Y B, et al Phase-only pattern synthesis based on gradient-descent optimization. Journal of Systems Engineering and Electronics, 2016, 27 (2): 297- 307.
doi: 10.1109/JSEE.2016.00030 |
32 |
LIN Y W, CHOU Y C, CHANG C Y A balanced digital phase shifter by a novel switching-mode topology. IEEE Trans. on Microwave Theory and Techniques, 2013, 61 (6): 2361- 2370.
doi: 10.1109/TMTT.2013.2258170 |
[1] | Jafar NOROLAHI, Paeiz AZMI, Mahdi NASIRIAN. Feasibility of a novel beamforming algorithm via retrieving spatial harmonics [J]. Journal of Systems Engineering and Electronics, 2022, 33(1): 38-46. |
[2] | Boyuan LIU, Qingping WANG, Weiwei WU, Naichang YUAN. A transceiver frequency conversion module based on 3D micropackaging technology [J]. Journal of Systems Engineering and Electronics, 2020, 31(5): 899-907. |
[3] | Lun Ma, Guisheng Liao, Aifei Liu, Yanling Jiang, and Ling Chen. Array-error estimation method for multi-channel SAR systems in azimuth [J]. Systems Engineering and Electronics, 2016, 27(4): 815-. |
[4] | Jingjing Cai, Dan Bao, and Peng Li. DOA estimation via sparse recovering from the smoothed covariance vector [J]. Systems Engineering and Electronics, 2016, 27(3): 555-561. |
[5] | Hongqi Yu, David Day-Uei Li, Kun Zhang, Jietao Diao, and Haijun Liu. Wideband direction-of-arrival estimation based on cubic spline function [J]. Journal of Systems Engineering and Electronics, 2015, 26(4): 688-. |
[6] | Wei Gao, Jianguo Huang, and Jing Han. Multi-channel differencing adaptive noise cancellation with multi-kernel method [J]. Systems Engineering and Electronics, 2015, 26(3): 421-430. |
[7] | Lanmei Wang, Zhihai Chen, Guibao Wang, and Xuan Rao. Estimating DOA and polarization with spatially spread loop and dipole pair array [J]. Journal of Systems Engineering and Electronics, 2015, 26(1): 44-. |
[8] | Lei Shen, Zhiwen Liu, Xiaoming Gou, and Yougen Xu. Polynomial-rooting based fourth-order MUSIC for direction-of-arrival estimation of noncircular signals [J]. Journal of Systems Engineering and Electronics, 2014, 25(6): 942-948. |
[9] | Wenchang Wang, Lei Li, Chunjing Liu, and Feng Liu. Minimum geometric power distortionless response beamforming against heavy-tailed noise of unknown statistics [J]. Journal of Systems Engineering and Electronics, 2011, 22(5): 749-753. |
[10] | Wang Ling, Yin Jihao & Chen Tianqi. New direction of arrival estimation method for wideband coherent signals [J]. Journal of Systems Engineering and Electronics, 2008, 19(3): 473-478. |
[11] | Wen Zhong, Li Liping & Zhang Xixiang. Wideband angle of arrival estimation of chirp signals using virtual Wignerville distribution [J]. Journal of Systems Engineering and Electronics, 2007, 18(2): 243-248. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||