Journal of Systems Engineering and Electronics ›› 2025, Vol. 36 ›› Issue (3): 791-802.doi: 10.23919/JSEE.2025.000027
• CONTROL THEORY AND APPLICATION • Previous Articles
Zhidong ZHANG1(), Gongliu YANG1,2(
), Qingzhong CAI1,*(
), Jing FAN3(
), Tao LI4(
)
Received:
2024-07-23
Accepted:
2025-02-28
Online:
2025-06-18
Published:
2025-07-10
Contact:
Qingzhong CAI
E-mail:zzdong@buaa.edu.cn;yanggongliu@buaa.edu.cn;qingzhong_cai@buaa.edu.cn;csscseri0101@yeah.net;eason@matrix-system.com
About author:
Supported by:
Zhidong ZHANG, Gongliu YANG, Qingzhong CAI, Jing FAN, Tao LI. Design and implementation of disturbance sliding mode observer for enhancing the dynamic control precision of inertial stabilization platform[J]. Journal of Systems Engineering and Electronics, 2025, 36(3): 791-802.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Genuine parameters of ISP"
Parameter | Symbol | Value |
Rotational inertia of ISP/(kg·m2) | 0.256 | |
Torque constant of PMSM/(N·m/A) | 1.0 | |
System sampling time/s | ||
Mean amplitude of gyroscope angular velocity noise/(rad/s) | ||
Noise power of the gyroscope angular velocity/(rad2/s3) |
1 |
HUANG S, LIANG W, TAN K K Intelligent friction compensation: a review. IEEE/ASME Trans. on Mechatronics, 2019, 24 (4): 1763- 1774.
doi: 10.1109/TMECH.2019.2916665 |
2 | ARMSTRONG-HLOUVRY B. Control of machines with friction. New York: Springer US, 1991. |
3 |
CANUDAS DE WIT C, OLSSON H, ASTROM K, et al A new model for control of systems with friction. IEEE Trans. on Automatic Control, 1995, 40 (3): 419- 425.
doi: 10.1109/9.376053 |
4 |
WANG C, PENG J D, PAN J F A novel friction compensation method based on stribeck model with fuzzy filter for PMSM servo systems. IEEE Trans. on Industrial Electronics, 2023, 70 (12): 12124- 12133.
doi: 10.1109/TIE.2022.3232667 |
5 |
ZHANG Z Y, LI Z Q, ZHOU Q K, et al Application in prestiction friction compensation for angular velocity loop of inertially stabilized platforms. Chinese Journal of Aeronautics, 2014, 27 (3): 655- 662.
doi: 10.1016/j.cja.2014.04.026 |
6 |
WANG B F, IWASAKI M, YU J P Finite-time command-filtered backstepping control for dual-motor servo systems with LuGre friction. IEEE Trans. on Industrial Informatics, 2023, 19 (5): 6376- 6386.
doi: 10.1109/TII.2022.3182341 |
7 |
ZHOU X Y, ZHAO B L, LIU W, et al A compound scheme on parameters identification and adaptive compensation of nonlinear friction disturbance for the aerial inertially stabilized platform. ISA Transactions, 2017, 67, 293- 305.
doi: 10.1016/j.isatra.2017.01.003 |
8 |
HUANG S N, TAN K K, LEE T H Adaptive friction compensation using neural network approximations. IEEE Trans. on Systems, Man and Cybernetics, Part C (Applications and Reviews), 2000, 30 (4): 551- 557.
doi: 10.1109/5326.897081 |
9 | CANDELO-ZULUAGA C, RIBA J R, GARCIA A. PMSM parameter estimation for sensorless FOC based on differential power factor. IEEE Trans. on Instrumentation and Measurement, 2021, 70: 1−12. |
10 |
SANDRE-HERNANDEZ O, MORALES-CAPORAL R, RANGEL-MAGDALENO R, et al Parameter identification of PMSMs using experimental measurements and a PSO algorithm. IEEE Trans. on Instrumentation and Measurement, 2015, 64 (8): 2146- 2154.
doi: 10.1109/TIM.2015.2390958 |
11 |
WANG Q W, WANG G L, ZHAO N N, et al An impedance model-based multiparameter identification method of PMSM for both offline and online conditions. IEEE Trans. on Power Electronics, 2021, 36 (1): 727- 738.
doi: 10.1109/TPEL.2020.3000896 |
12 |
WALLSCHEID O, BOCKER J Global identification of a low-order lumped-parameter thermal network for permanent magnet synchronous motors. IEEE Trans. on Energy Conversion, 2016, 31 (1): 354- 365.
doi: 10.1109/TEC.2015.2473673 |
13 |
WASIM M, ALI A, CHOUDHRY M A, et al Robust design of sliding mode control for airship trajectory tracking with uncertainty and disturbance estimation. Journal of Systems Engineering and Electronics, 2024, 35 (1): 242- 258.
doi: 10.23919/JSEE.2024.000017 |
14 |
FARAJZADEH-DEVIN M-G, SANI S K H Enhanced two-loop model predictive control design for linear uncertain systems. Journal of Systems Engineering and Electronics, 2021, 32 (1): 220- 227.
doi: 10.23919/JSEE.2021.000019 |
15 |
LIU F, WANG H, SHI Q L, et al Comparison of an ANFIS and fuzzy PID control model for performance in a two-axis inertial stabilized platform. IEEE Access, 2017, 5, 12951- 12962.
doi: 10.1109/ACCESS.2017.2723541 |
16 |
FANG J C, YIN R, LEI X S An adaptive decoupling control for three-axis gyro stabilized platform based on neural networks. Mechatronics, 2015, 27, 38- 46.
doi: 10.1016/j.mechatronics.2015.02.002 |
17 |
GUO Q Y, LIU G, XIANG B, et al Robust control of magnetically suspended gimbals in inertial stabilized platform with wide load range. Mechatronics, 2016, 39, 127- 135.
doi: 10.1016/j.mechatronics.2016.08.003 |
18 |
ZHAO L, HE M H, CAO X Y Research on inertial reference units prescribed performance integral sliding mode angle control. Advances in Space Research, 2023, 71 (10): 4210- 4221.
doi: 10.1016/j.asr.2023.01.003 |
19 |
ZHAO Z Q, ZHANG L, NAN H J, et al System modeling and motion control of a cable-driven parallel platform for underwater camera stabilization. IEEE Access, 2021, 9, 132954- 132966.
doi: 10.1109/ACCESS.2021.3115359 |
20 |
MAO J L, LI S H, LI Q, et al Design and implementation of continuous finite-time sliding mode control for 2-DOF inertially stabilized platform subject to multiple disturbances. ISA Transactions, 2019, 84, 214- 224.
doi: 10.1016/j.isatra.2018.09.014 |
21 |
DING Z S, ZHAO F, LANG Y D, et al Anti-disturbance neural-sliding mode control for inertially stabilized platform with actuator saturation. IEEE Access, 2019, 7, 92220- 92231.
doi: 10.1109/ACCESS.2019.2927427 |
22 |
LIU X Y, MAO J L, YANG J, et al Robust predictive visual servoing control for an inertially stabilized platform with uncertain kinematics. ISA Transactions, 2021, 114, 347- 358.
doi: 10.1016/j.isatra.2020.12.039 |
23 |
QU J H, XIA Y Q, SHI Y P, et al Modified ADRC for inertial stabilized platform with corrected disturbance compensation and improved speed observer. IEEE Access, 2020, 8, 157703- 157716.
doi: 10.1109/ACCESS.2020.3020143 |
24 |
KNIGSEDER F, KEMMETMLLER W, KUGI A Attitude control strategy for a camera stabilization platform. Mechatronics, 2017, 46, 60- 69.
doi: 10.1016/j.mechatronics.2017.06.012 |
25 |
QIANG H P, JIN S, FENG X Y, et al Model predictive control of a shipborne hydraulic parallel stabilized platform based on ship motion prediction. IEEE Access, 2020, 8, 181880- 181892.
doi: 10.1109/ACCESS.2020.2992458 |
26 |
TOLOEI A R, PIRZADEH M, VALI A R Design of predictive control and evaluate the effects of flight dynamics on performance of one axis gimbal system considering disturbance torques. Aerospace Science and Technology, 2016, 54, 143- 150.
doi: 10.1016/j.ast.2016.04.019 |
27 |
ALTAN A, HACIOGLU R Model predictive control of three-axis gimbal system mounted on UAV for real-time target tracking under external disturbances. Mechanical Systems and Signal Processing, 2020, 138, 106548.
doi: 10.1016/j.ymssp.2019.106548 |
28 |
GALCHENKO P, PERNICKA H Neural network attitude control system design for the wallops arc-second pointer. Journal of Guidance, Control and Dynamics, 2022, 45 (7): 1365- 1370.
doi: 10.2514/1.G006465 |
29 |
XIANG B, MU Q Q Gimbal control of inertially stabilized platform for airborne remote sensing system based on adaptive RBFNN feedback model. IFAC Journal of Systems and Control, 2021, 16, 100148.
doi: 10.1016/j.ifacsc.2021.100148 |
30 |
SAINI K, KUMAR N, BHUSHAN B, et al Artificial neural network-based adaptive control for nonlinear dynamical systems. International Journal of Adaptive Control and Signal Processing, 2024, 38 (8): 2693- 2715.
doi: 10.1002/acs.3823 |
31 |
BHANU P, PAPPA N SVPWM: torque level controlling of wind turbine system using fuzzy and ABC-DQ transformation. International Journal of Fuzzy Systems, 2017, 19 (1): 141- 154.
doi: 10.1007/s40815-016-0157-1 |
[1] | Pu YANG, Xukai HU, Zixin WANG, Zhiqing ZHANG. Sliding mode fault tolerant consensus control for multi-agent systems based on super-twisting observer [J]. Journal of Systems Engineering and Electronics, 2022, 33(6): 1309-1319. |
[2] | FARAJZADEH-DEVIN Mohammad-Ghassem, HOSSEINI SANI Seyed Kamal. Enhanced two-loop model predictive control design for linear uncertain systems [J]. Journal of Systems Engineering and Electronics, 2021, 32(1): 220-227. |
[3] | Bomin Huang, Lingmei Chen, and Weiyao Lan. Global robust output regulation for a class of affine singular nonlinear systems [J]. Systems Engineering and Electronics, 2017, 28(4): 745-. |
[4] | Xiaolei Li, Xiaoyuan Luo, Shaobao Li, Jianjin Li, and Xinping Guan. Consensus of second-order nonlinear multi-agent systems via sliding mode observer and controller [J]. Systems Engineering and Electronics, 2017, 28(4): 756-. |
[5] | Hui Sun, Jianguo Yan, Yaohong Qu, and Jie Ren. Sensor fault-tolerant observer applied in UAV anti-skid braking control under control input constraint [J]. Systems Engineering and Electronics, 2017, 28(1): 126-. |
[6] | Jiaoru Huang, Fucai Qian, Guo Xie, and Hengzhan Yang. Robust adaptive control for dynamic systems with mixed uncertainties [J]. Systems Engineering and Electronics, 2016, 27(3): 656-663. |
[7] | Mou Chen and Bin Jiang. Robust bounded control for uncertain flight dynamics using disturbance observer [J]. Journal of Systems Engineering and Electronics, 2014, 25(4): 640-. |
[8] | Jie Wang, Qun Zong, Bailing Tian, and Helong Liu. Flight control for a flexible air-breathing hypersonic vehicle based on quasi-continuous high-order sliding mode [J]. Journal of Systems Engineering and Electronics, 2013, 24(2): 288-295. |
[9] | Jun Jiang, Jian Guo, Bin Yao, and Qingwei Chen. Adaptive robust control of mobile satellite communication system with disturbance and model uncertainties [J]. Journal of Systems Engineering and Electronics, 2012, 23(5): 761-767. |
[10] | Zhaoqiang Ge. Perturbation and robust controllability of singular distributed parameter control systems in Hilbert space [J]. Journal of Systems Engineering and Electronics, 2011, 22(4): 647-653. |
[11] | Xueyan Zhao, Feiqi Deng. Solution of the HJI equations for nonlinear H∞ control design by state-dependent Riccati equations approach [J]. Journal of Systems Engineering and Electronics, 2011, 22(4): 654-660. |
[12] | Zhang Ren, Wei Wang, and Zhen Shen. New robust fault-tolerant controller for self-repairing flight control systems [J]. Journal of Systems Engineering and Electronics, 2011, 22(1): 77-82. |
[13] | Jianqiao Yu, Guanchen Luo, and Wentao Yin. Missile robust gain scheduling autopilot design using full block multipliers [J]. Journal of Systems Engineering and Electronics, 2010, 21(5): 883-891. |
[14] | Duan Guangren & Li Yanjiang. Robust passive control for discrete-time T-S fuzzy systems with delays [J]. Journal of Systems Engineering and Electronics, 2009, 20(5): 1045-1051. |
[15] | Pang Haiping & Chen Xia. Global robust optimal sliding mode control for uncertain affine nonlinear systems [J]. Journal of Systems Engineering and Electronics, 2009, 20(4): 838-843. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||