
Journal of Systems Engineering and Electronics ›› 2022, Vol. 33 ›› Issue (3): 612-646.doi: 10.23919/JSEE.2022.000059
• SYSTEMS ENGINEERING • Previous Articles Next Articles
Received:2022-01-12
															
							
															
							
															
							
																	Online:2022-06-18
															
							
																	Published:2022-06-24
															
						Contact:
								Renyong ZHANG   
																	E-mail:zhang.renyong@csu.ac.cn
																					About author:Renyong ZHANG. A review of periodic orbits in the circular restricted three-body problem[J]. Journal of Systems Engineering and Electronics, 2022, 33(3): 612-646.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
 
													
													Table 1
Classifications of Stromgren’s families"
| Family | Around | Direction in RS | Direction in FS | Symmetric | Interpretation | 
| a | L3 | Retrograde | Inexistence | x axis | Lyapunov, Halo | 
| b | L1 | Retrograde | Inexistence | x axis | Lyapunov, Halo | 
| c | L2 | Retrograde | Inexistence | x axis | Lyapunov, Halo | 
| d | L4 | — | — | — | Inexistence for μ = 0.5 | 
| e | L5 | — | — | — | Inexistence for μ = 0.5 | 
| f | m1 | Retrograde | Direct | x axis | Earth orbit | 
| g | m1 | Direct | Direct | x axis | Earth orbit | 
| h | m2 | Retrograde | Direct | x axis | DRO | 
| i | m2 | Direct | Direct | x axis | DPO | 
| k | m1,m2 | Direct | Direct | x axis | See [ | 
| l | m1,m2 | Retrograde | Direct | x axis | See [ | 
| m | m1,m2 | Retrograde | Retrograde | x axis | See [ | 
| n | — | Retrograde | — | Asymmetric | See [ | 
| o | — | Retrograde | — | Asymmetric | Asymptotic | 
| r | — | Retrograde | — | y axis | Asymptotic | 
 
													
													Table 2
Previous contributions of the circular restricted three-body problem and periodic orbits"
| Reference title | Principal contributor | Year | General description | μ | 
| n-body problem | Newton | 1687 | Solution to the n-body problem | Optional | 
| Circular restricted | Euler | 1772 | Formulation | Optional | 
| Three-body problem | Lagrange | 1772 | Equilibrium solutions | Optional | 
| Jacobi | 1836 | Jacobi constant | Optional | |
| Hill | 1877–1878 | Motion of the Moon | 0 | |
| Poincare | 1892–1899 | Existence of periodic orbit | Optional | |
| Copenhagen category | Darwin | 1897–1910 | Families of periodic orbits | 1/11 | 
| Moulton | 1900–1917 | 1/5,1/2 | ||
| Stromgren | 1913–1939 | 1/2 | ||
| Periodic lunar orbit | Egorov | 1957 | Families of periodic orbits | ~0.012 | 
| Newton | 1958 | |||
| Broucke | 1962 | |||
| Huang | 1962 | |||
| Arenstorf | 1963 | |||
| Motion around the triangular | Rabe | 1961 | Families of periodic orbits | ~0.000 95 | 
| Rabe | 1962 | ~0.012 | ||
| Lagrangian points | Deprit | 1965 | — | — | 
| Lunar trajectories | Egorov | 1957 | Families of special non-periodic orbits | ~0.012 | 
| Thüring | 1959 | |||
| Buchheim | 1959 | |||
| Ehriche | 1962 | |||
| Szebehely | 1964 | |||
| Pierce | 1965 | |||
| Standish | 1965 | |||
| Application to binary systems | Kuiper | 1941 | Families of non-periodic orbits | 0.1–0.5 | 
| Kopal | 1956 | |||
| Abhyankar | 1959 | |||
| Gould | 1959 | |||
| Additional periodic orbits | Message | 1959 | 2:1 commensurability | ~0.00095 | 
| Deprit | 1965 | asymptotic-periodic | several | |
| Szebehely | 1965 | 1:3 commensurability | 0.2–0.24 | |
| Knowles | 1959 | — | — | |
| Application to Earth- Moon systems | Farquhar | 1968–2017 | Families of | 0–0.5 | 
| Howell | 1984–2017 | halo (NRHO) orbits | ||
| Restrepo | 2017 | and all planar group | 
 
													
													Table 3
Applications of periodic orbit missions"
| Mission | Operator | Orbit/Type | Scienti?c objective | Year | Launch/Dry mass/kg | References | 
| ISEE-3 | NASA, ESA | L1/L2-Halo1 1st mission | Solar wind, Earth’s magnetic ?eld | 1978 | 479/390 | [ | 
| WIND | NASA | L1-Quasi-halo1 | Solar wind/Earth’s magnetosphere monitor | 1994 | 1250/950 | [ | 
| SOHO | NASA, ESA | L1-Halo1 | Solar observatory | 1996 | 1850/610 | [ | 
| ACE | NASA | L1-Lissajous1 | Energetic particles solar wind | 1997 | 757/562 | [ | 
| WMAP | NASA | L2-Lissajous1 | Cosmic microwaves, Background radiation | 2001 | 835/763 | [ | 
| Genesis | NASA | L1-Quasi-Halo1 | Solar wind particles samples and particles | 2001 | 636/494 | [ | 
| Herschel | ESA | L2-Halo1 | Far-infrared telescope, Formation of galaxies | 2009 | 3400/2800 | [ | 
| Chang’e?2 | China | L2-Halo1 | Extend mission, Visited asteroid | 2010 | 2480/1180 | [ | 
| GAIA | ESA | L2-Halo1 | Galactic structure, Astrometry | 2013 | 2029/1392 | [ | 
| LISA | ESA | L1-Quasi-Halo1 | Gravitational wave | 2015 | 1910/810 | [ | 
| DSCOVR | NASA, ESA | L1-Lissajous | Space weather/climate Earth observation | 2015 | 570/307 | [ | 
| Artemis | NASA | L1-Quasi-Halo1 1st mission | Extend mission, Lunar magnetosphere | 2007 | 128/77 | [ | 
| Que-qiao | China | L2-Halo2 | Communication relay | 2018 | 425/325 | [ | 
| DRO | China | DRO | Earth-Moon space exploration | 2022 | # | # | 
| TESS | NASA | 2:1Resonant2 | Search exoplanets | 2018 | 362/317 | [ | 
| LOP-G | NASA, Russia | NRHO2 | Lunar station, Space gateway | # | # | [ | 
| JWST | NASA, ESA | L2-Halo1 | Space telescope, Universe observatory | 2021 | 6500/# | [ | 
| IXO | NASA, ESA, JAXA | L2-Lissajous1 | International X-ray observatory | # | # | [ | 
| Stellar imager | NASA | L2-Halo1 | Interferometry of stellar surface | # | # | [ | 
| Eddington | ESA | L2-Halo1 | Earth-like planets, Stellar observations | 2003* | # | [ | 
| Darwin | ESA | L2-Halo1 | Search for life | 2007* | # | [ | 
| TPF | NASA | L2-Halo1 | Detecting planets | 2007* | # | [ | 
| 1 | WOODARD M, FOLTA D, WOODFORK D. ARTEMIS: the first mission to the lunar libration orbits. https://www.issfd.org/ISSFD_2009/InterMissionDesignI/Woodard.pdf. | 
| 2 | STRANGE N, LANDAU D, MCELRATH T, et al. Overview of mission design for NASA asteroid redirect robotic mission concept. https://trs.jpl.nasa.gov/bitstream/handle/2014/44361/13–4555_A1b.pdf?sequence=1. | 
| 3 | NASA. JWST vital facts: mission goals. NASA james web space telescope. https://jwst.nasa. gov/facts.html. | 
| 4 | WHITLEY R, MARTINEZ R. Options for staging orbits in cis–lunar space. https://ntrs.nasa.gov/api/citations/20150019648/downloads/20150019648.pdf. | 
| 5 | SLOSS P. NASA updates lunar gateway plans. https://www. Nasaspaceflight.com/2018/09/nasa–lunar–gateway–plans/. | 
| 6 | MERRI M, SARKARATI M. Lunar orbiter platform–gateway: a clear use case for CCSDS MO services. Proc. of the AIAA Space and Astronautics Forum and Exposition, 2018: 5337. | 
| 7 | LEVACK D J, HORTON J F, JOYNER C R, et al. Mars NTP architecture elements using the lunar orbital platform–gateway. Proc. of the AIAA Space and Astronautics Forum and Exposition, 2018: 5105. | 
| 8 | BURNS J O, MELLINKOFF B, SPYDELL M, et al. Science on the lunar surface facilitated by low latency telerobotics from a lunar orbital platform–gateway. Acta Astronautica, 2019, 154: 195–203. | 
| 9 | RICKER G R, WINN J N, VANDERSPEK R, et al. Transiting exoplanet survey satellite. Journal of Astronomical Telescopes, Instruments, and Systems, 2014, 1(1): 14003. | 
| 10 | SULLIVAN P W, WINN J N, BERTA–THOMPSO Z K, et al. The transiting exoplanet survey satellite: simulations of planet detections and astrophysical false positives. The Astrophysical Journal 2015, 809(1): 77. | 
| 11 | RICKER G R, VANDERSPEK R K, LATHAM D W, et al. The transiting exoplanet survey satellite mission. Proc. of the American Astronomical Society Meeting, 2014, 224: 113.02. | 
| 12 | OVERBYE D. NASA’s TESS starts collecting planets.https://www.nytimes.com/2018/09/20/science/nasa–tess–planets.html. | 
| 13 | APTEKAR R L, FREDERIKS D D, GOLENETSKII S V, et al. Gamma–ray burst experiment for the GGS wind spacecraft. Space Science Reviews, 1995, 71(1–4): 265–272. | 
| 14 | VON–ROSENVINGE T T, BARBIER L M, KARSCH J, et al. The energetic particles: acceleration, composition, and transport (EPACT) investigation on the wind spacecraft. Space Science Reviews, 1995, 71(1–4): 155–206. | 
| 15 | KASPER J C, LAZARUS A J, STEINBERG J T, et al. Physics–based tests to identify the accuracy of solar wind ion measurements: a case study with the wind faraday cups. Journal of Geophysical Research: Space Physics, 2006, 111(A3): A03105. | 
| 16 | WILSON III L B, CATTELL C, KELLOGG P J, et al. Waves in interplanetary shocks: a wind/waves study. Physical Review Letters, 2007, 99(4) : 41101. | 
| 17 | KASPER J C, LAZARUS A J, GARY S P. Hot solar–wind helium: direct evidence for local heating by alfven–cyclotron dissipation. Physical Review Letters, 2008, 101(26): 261103. | 
| 18 | FRANZ H. Wind lunar backflip and distant prograde orbit implementation. Proc. of the 11th Annual AAS/AIAA Space Flight Mechanics Meeting, 2001: 999–1017. | 
| 19 | FARQUHAR R. The flight of ISEE–3/ICE–origins, mission history, and a legacy. Proc. of the AIAA/AAS Astrodynamics Specialist Conference and Exhibit, 1988: 4464. | 
| 20 | LO M, WILLIAMS B, BOLLMAN W, et al. Genesis mission design. Proc. of the AIAA/AAS Astrodynamics Specialist Conference and Exhibit, 1998: 4468. | 
| 21 | POINCARE H. Les methodes nouvelles de la mecanique celeste. Paris: Gauthier–Villars, 1892. | 
| 22 | MOULTON F R. Periodic orbits. 161st ed. Washington: Carnegie Institution of Washington, 1920. | 
| 23 | FARQUHAR R W. The control and use of libration–point satellites. California: Stanford University, 1968. | 
| 24 | FARQUHAR R W. The control and use of libration–point satellites. https://ntrs.nasa.gov/api/citations/19710000821/downloads/19710000821.pdf. | 
| 25 | FARQUHAR R W. Halo–orbit and lunar–swingby missions of the 1990’s. Acta Astronautica, 1991, 24(C): 227–234. | 
| 26 | BREAKWELL J V, KAMEL A A, RATNER M J. Station–keeping for a translunar communication station. Celestial Mechanics 1974, 10(3): 357–373. | 
| 27 | BREAKWELL J V, BROWN J V. The ‘halo’ family of 3–dimensional periodic orbits in the Earth–Moon restricted 3–body problem. Celestial Mechanics, 1979, 20(4): 389–404. | 
| 28 | BUSH G W. The vision for space exploration. https://www.nasa. gov /pdf/55583main_vision_ space_exploration2.pdf . | 
| 29 | FOUST J. NASA seeks information on developing deep space gateway module. https://spacenews.com/nasa–seeks–information–on–developing–deep–space–gateway–module/. | 
| 30 | FOUST J. NASA issues study contracts for deep space gateway element. https://spacenews.com/nasa–issues–study–contracts–for–deep–space–gateway–element/. | 
| 31 | HANNEKE W. NASA and Russia partner up for crewed deep–space missions. https://www.Space.com. | 
| 32 | GODWIN C. NASA’s human spaceflight plans come into focus with announcement of deep space gateway. https://www.spaceflightinsider.com/organizations/nasa/nasa-human–spaceflight–plans–focus–announcement–deep–space–gateway/. | 
| 33 | SZEBEHELY V. Theory of orbits: the restricted problem of three bodies. New York: Academic Press, 1967. | 
| 34 | FARQUHAR R W, KAMEL A A. Quasi–periodic orbits about the translunar libration point. Celestial Mechanics, 1973, 7(4): 458–473. | 
| 35 | PERGOLA P, ALESSI E M. Libration point orbit characterization in the Earth–Moon system. Monthly Notices of the Royal Astronomical Society, 2012, 426(2): 1212–1222. | 
| 36 | FOLTA D C, PAVLAK T A, HAAPALA A F, et al. Earth–Moon libration point orbit stationkeeping: theory, modeling, and operations. Acta Astronautica, 2014, 94(1): 421–433. | 
| 37 | LIU X, BAOYIN H, MA X. Equilibria, periodic orbits around equilibria, and heteroclinic connections in the gravity field of a rotating homogeneous cube. Astrophysics and Space Science, 2011, 333(2): 409–418. | 
| 38 | ENGELBORGHS K, LUZYANINA T, ROOSE D. Numerical bifurcation analysis of periodic solutions of partial differential equations. Journal of Computational and Applied Mathematics, 2000, 125(1/2): 265–275. | 
| 39 | CREANGA D, NADEJDE C, GASNER P. Dynamical analysis of heart beat from the viewpoint of chaos theory. Romanian Journal of Physics, 2011, 56(1/2): 177–184. | 
| 40 | GREBOW D J. Trajectory design in the Earth–Moon system and lunar south pole coverage. Indiana: Purdue University, 2010. | 
| 41 | TOPPUTO F. Low–thrust non–Keplerian orbits: analysis, design, and control. Milan: Polytechnic University of Milan, 2007. | 
| 42 | HADJIDEMETRIOU J D. The continuation of periodic orbits from the restricted to the general three–body problem. Celestial Mechanics, 1975, 12(2): 155–174. | 
| 43 | BOZIS G, HADJIDEMETRIOU J D. On the continuation of periodic orbits from the restricted to the general three–body problem. Celestial Mechanics, 1976, 13(2): 127–136. | 
| 44 | CHICONE C, RHOUMA M B H, CHICONE C. On the continuation of periodic orbits. Methods and Applications of Analysis, 2000, 7(1): 85–104. | 
| 45 | ALLGOWER E L, GEORG K. Introduction to numerical continuation methods. Pennsylvania: Society for Industrial and Applied Mathematics, 2003. | 
| 46 | SIMO C. On the analytical and numerical approximation of invariant manifolds. Modern Methods in Celestial Mechanics, 1990, 1: 285–329. | 
| 47 | GREBOW D. Generating periodic orbits in the circular restricted three−body problem with applications to lunar south pole coverage. Indiana: Purdue University, 2006. | 
| 48 | DARWIN G H. Periodic orbits. Acta Mathematica, 1897, 21(1): 99–242. | 
| 49 | DARWIN G H. On certain families of periodic orbits. Monthly Notices of the Royal Astronomical Society, 1909, 70(2): 108–143. | 
| 50 | GOUDAS C L. Three–dimensional periodic orbits and their stability. Icarus, 1963, 2: 1–18. | 
| 51 | CHENCINER A. Poincare and the three–body problem. http://www.bourbaphy.fr/chenciner.pdf. | 
| 52 | MOULTON F R. A class of periodic orbits of superior planets. Transactions of the American Mathematical Society, 1912, 13(1): 96–108. | 
| 53 | HOWELL K. Families of orbits in the vicinity of the collinear libration points. The Journal of the Astronautical Sciences, 2001, 49(1): 107–125. | 
| 54 | STROMGREN E. Forms of periodic motion in the restricted problem and in the general problem of three bodies, according to researches executed at the observatory copenhagen. https://adsabs.harvard.edu/pdf/1922PCopO. | 
| 55 | STROMGREN E. Connaisance actuelle des orbites dans le probleme des trois corps. https://adsabs.harvard.edu/pdf/1933BuAst. | 
| 56 | HILL G W. On the part of the motion of the lunar perigee which is a function of the mean motions of the sun and moon. Acta Mathematica, 1886, 8(1): 1–36. | 
| 57 | HENON M. Exploration numerique du probleme restreint. I. Masses egales; orbites periodiques. Annales d’Astrophysique, 1965, 28: 499. | 
| 58 | HENON M. Exploration numerique du probleme restreint. II. Masses egales, stabilite des orbites periodiques. Annales d’Astrophysique, 1965, 28: 992. | 
| 59 | HENON M. Numerical exploration of the restricted problem. VI. Hill’s case: non–periodic orbits. Astronomy and Astrophysics, 1970, 9: 24–36. | 
| 60 | HENON M. Explorationes numerique du probleme restreint IV: masses egales, orbites non periodique. Bullettin Astronomique, 1966, 3(1): 49–66. | 
| 61 | HENON M. Numerical exploration of the restricted problem. V. Hill’s case: periodic orbits and their stability. Astronomy and Astrophysics, 1969, 1: 223–238. | 
| 62 | BRAY T A, GOUDAS C L. Three–dimensional periodic oscillations about L1, L2, and L3. Washington: Advances in Astronomy and Astrophysics, 1967. | 
| 63 | MARCHAL C. The three–body problem. New York: Elsevier, 1990. | 
| 64 | Giacaglia G E O. Periodic orbits, stability and resonances. Dordrecht: D. Reidel, 1970. | 
| 65 | HENON M, NICE O D, RESERVED A R. Vertical stability of periodic orbits in the restricted problem. Celestial Mechanics, 1973, 8(2): 269–272. | 
| 66 | HENON M. Vertical stability of periodic orbits in the restricted problem. I. equal masses. Astronomy and Astrophysics, 1973, 28(2): 415. | 
| 67 | HENON M. Vertical stability of periodic orbits in the restricted problem. II. Hill’s case. Astronomy and Astrophysics, 1974, 30(2): 317. | 
| 68 | KAZANTZIS P G. The structure of periodic solutions in the restricted problem of the three bodies II: Sun–Jupiter case. Astrophysics and Space Science, 1978, 59(2): 355–371. | 
| 69 | ROBIN I A, MARKELLOS V V. Numerical determination of three–dimensional periodic orbits generated from vertical self−resonant satellite orbits. Celestial Mechanics, 1980, 21(4): 395–434. | 
| 70 | FARQUHAR R W. The utilization of halo orbits in advanced lunar operations. Maryland: Goddard Space Flight Center, 1971. | 
| 71 | ZAGOURAS C G, KAZANTZIS P G. Three–dimensional periodic oscillations generating from plane periodic ones around the collinear Lagrangian points. Astrophysics and Space Science, 1979, 61(2): 389–409. | 
| 72 | MICHALODIMITRAKIS M. A new type of connection between the families of periodic orbits of the restricted problem. Astronomy and Astrophysics, 1978, 64: 83–86. | 
| 73 | ICHTIAROGLOU S, MICHALODIMITRAKIS M. Three–body problem–the existence of families of three–dimensional periodic orbits which bifurcate from planar periodic orbits. Astronomy and Astrophysics, 1980, 81(1/2): 30–32. | 
| 74 | XU M, XU S J. Exploration of distant retrograde orbits around moon. Acta Astronautica, 2009, 65 (5/6): 853–860. | 
| 75 | BREAKWELL J. Trajectories launched normal to the elliptic. Proc. of the 14th International Astronautical Congress, 1963. | 
| 76 | HOWELL K C, BREAKWELL J V. Almost rectilinear halo orbits. Celestial Mechanics, 1984, 32(1): 29–52. | 
| 77 | ZAGOURAS C G. Three–dimensional periodic orbits about the triangular equilibrium points of the restricted problem of three bodies. Celestial Mechanics, 1985, 37(1): 27–46. | 
| 78 | GREBOW D J, OZIMEK M T, HOWELL K C, et al. Multibody orbit architectures for lunar south pole coverage. Journal of Spacecraft & Rockets, 2008, 45(2): 344–358. | 
| 79 | MURRAY C D, DERMOTT S F. Solar system dynamics. Cambridge: Cambridge University, 1999. | 
| 80 | WHITTAKER E. Analytical dynamics. Cambridge: Cambridge University, 1902. | 
| 81 | INCE E L. Ordinary differential equations. New York: Longmans Green, 1926. | 
| 82 | CESARI L. Asymptotic behavior and stability problems in ordinary differential equations. Berlin: Springer Science & Business Media, 2012. | 
| 83 | BIRKHOFF G D. Surface transformations and their dynamical applications. Acta Mathematica, 1922, 43(1): 1–119. | 
| 84 | MESSAGE J. Some periodic orbits in the restricted problem of three bodies and their stabilities. Astronomical Journal, 1959, 64(6): 226–236. | 
| 85 | WINTNER A. Three notes on characteristic exponents and equations of variation in celestial mechanics. American Journal of Mathematics, 1931, 53(3): 605–625. | 
| 86 | ROSENTHAL J. The equation of stability of periodic orbits of the restricted problem of three bodies in Thiele’s regularising coordinates. American Journal of Mathematics, 1931, 53(3): 626–630. | 
| 87 | DANBY J M A. Stability of the triangular points in the elliptic restricted problem of three bodies. The Astronomical Journal, 1964, 69: 165. | 
| 88 | BROUCKE R A. Periodic orbits in the restricted three–body problem with earth–moon masses. https://ntrs.nasa.gov/api/citations/19680013800/downloads/19680013800.pdf. | 
| 89 | CAMPBELL E T. Bifurcation from families of periodic solutions in the cicular restricted problem with application trajectory design. Indiana: Purdue University, 1999. | 
| 90 | SEYDEL R. Practical bifurcation and stability analysis. Berlin: Springer Science & Business Media, 2009. | 
| 91 | ZAGOURAS C G, KALOGEROPOULOU M. Numerical determination of families of three–dimensional periodic orbits bifurcating from plane periodic orbits around both primaries. Astronomy and Astrophysics Supplement Series, 1978, 32: 307–321. | 
| 92 | MARKELLOS V V. Bifurcations of plane with three–dimensional asymmetric periodic orbits in the restricted three–body problem. Monthly Notices of the Royal Astronomical Society, 1977, 180(2): 103–116. | 
| 93 | PAPADAKIS K, ZAGOURAS C. Bifurcation points and intersections of families of periodic orbits in the three–dimensional restricted three–body problem. Astrophysics and Space Sciences, 1993, 199: 241–256. | 
| 94 | HOWELL K C, CAMPBELL E T. Three–dimensional periodic solutions that bifurcate from halo families in the circular restricted three–body problem. Advances in the Astronautical Sciences, 1999, 102: 891–910. | 
| 95 | KAZANTZIS P G, GOUDAS C L. A grid search for three–dimensional motions and three new types of such motions. Astrophysics and Space Science, 1975 32(1): 95–113. | 
| 96 | MARKELLOS V V, GOUDAS C L, KATSIARIS G A. Bifurcations of planar to three–dimensional periodic orbits in the restricted three–body problem. Celestial Mechanics, 1981, 25(1): 3–31. | 
| 97 | MARKELLOS V V. Numerical investigation of the planar restricted three–body problem. Celestial Mechanics, 1974, 10(1): 87–134. | 
| 98 | HENON M. Generating families in the restricted three–body problem. II. qualitative study of bifurcations. Berlin: Springer Science & Business Media, 1997. | 
| 99 | IOOSS G, JOSEPH D D. Bifurcation and stability of nT–periodic solutions branching from T–periodic solutions at points of resonance. Archive for Rational Mechanics and Analysis, 1977, 66(2): 135–172. | 
| 100 | KUZNETSOV Y A. Elements of applied bifurcation theory. New York: Springer, 1998. | 
| 101 | REICHL L E. The transition to chaos in conservative classical systems: quantum manifestations. New York: Springer, 1992. | 
| 102 | DICHMANN D J, DOEDEL E J, PAFFENROTH R C. The computation of periodic solutions of the 3–body problem using the numerical continuation software AUTO. Proc. of the International Conference on Libration Point Orbits and Applications, 2003: 429–488. | 
| 103 | DOEDEL E J, PAFFENROTH R C, KELLER H B, et al. Computation of periodic solutions of conservative systems with application to the 3–body problem. International Journal of Bifurcation and Chaos, 2003, 13(6): 1353–1381. | 
| 104 | DOEDEL E J, ROMANOV V A, PAFFENROTH R C, et al. Elemental periodic orbits associated with the libration points in the circular restricted 3–body problem. International Journal of Bifurcation and Chaos, 2007, 17(8): 2625–2677. | 
| 105 | GAUTSCHI W. Numerical analysis: an introduction. Barton: Birkhauser, 1997. | 
| 106 | MATUKUMA T. On the periodic orbits in Hill’s case. Proceedings of the Imperial Academy, 1930, 6(1): 6–8. | 
| 107 | MATUKUMA T. Periodic orbits in Hill’s case. second paper (retrograde variational orbits). Proceedings of the Imperial Academy, 1932, 8(5): 147–150. | 
| 108 | MATUKUMA T. Periodic orbits in Hill’s case. third paper (periodic ejectional orbit). Proceedings of the Imperial Academy, 1933, 9(8): 364–366. | 
| 109 | EGOROV V A. Certain problems of moon flight dynamics. The Russian Literature of Satellites, 1958, 1: 107–174. | 
| 110 | BROUCKE M R. Recherches d’orbites periodiques dans le probleme restreint plan (systeme Terre–Lune). Leuven: Universite Catholique de Louvain, 1962. | 
| 111 | HUANG S S. Preliminary study of orbits of interest for moon probes. The Astronomical Journal, 1962, 67: 304. | 
| 112 | ARENSTORF R F. Periodic solutions of the restricted three body problem representing analytic continuations of Keplerian elliptic motions. American Journal of Mathematics, 1963, 85(1): 27–35. | 
| 113 | THUNNG B. Zwei spezieller mondeinfang bahnen in der raumfahrt um erde und mond. Astronautica Acta, 1959, 5: 241–250. | 
| 114 | BUCHHEIM R. Lunar flight trajectories in space technology. New York: Wiley Edition, 1959. | 
| 115 | SZEBEHELY V, PIERCE D A, STANDISH S. A group of earth to moon trajectories with consecutive collisions. Progress in Astronautics and Aeronautics: Celestial Mechanics and Astrodynamics, 1964, 14: 35–51. | 
| 116 | KUIPER G P. On the interpretation of beta lyrae and other close binaries. The Astrophysical Journal, 1941, 93: 133. | 
| 117 | KOPAL Z. Evolutionary processes in close binary stars. Annales d’Astrophysique, 1956, 19: 298. | 
| 118 | ABBYANKAR K D. Stability of straight–line solutions in the restricted problem of three bodies. The Astronomical Journal, 1959, 64: 163. | 
| 119 | GOULD N L. Particle trajectories around close binary systems. The Astronomical Journal, 1959, 64: 136. | 
| 120 | DEPRIT A, HENRARD J. Symmetric doubly asymptotic orbits in the restricted three–body problem. The Astronomical Journal, 1965, 70: 271. | 
| 121 | BENEST D. Effects of the mass ratio on the existence of retrograde satellites in the circular restricted problem. IV–three–dimensional stability of plane periodic orbits. Astronomy and Astrophysics, 1977, 54 : 563–568. | 
| 122 | RESTREPO R L, RUSSELL R P. A database of planar axi–symmetric periodic orbits for the solar system. Proc. of the AAS Astrodynamics Specialists Conference, 2017: AAS 17–694. | 
| 123 | RESTREPO R L, RUSSELL R P. Patched periodic orbits: a systematic strategy for low energy transfer design. Proc. of the AAS Astrodynamics Specialists Conference, 2017: AAS 17–695. | 
| 124 | WINTNER A. The analytical foundations of celestial mechanics. North Chelmsford: Courier Corporation, 2014. | 
| 125 | BARRAR R B. Existence of periodic orbits of the second kind in the restricted problems of three bodies. The Astronomical Journal, 1965, 70(1): 3–4. | 
| 126 | GOODRICH E F. Numerical determination of short period Trojan orbits in the restricted three body problem. Astronomical Journal, 1966, 71: 88. | 
| 127 | DEPRIT A, JACQUES H, PALMORE J, et al. The trojan manifold in the system Earth–Moon. Monthly Notices of the Royal Astronomical Society, 1967, 137(3): 311–335. | 
| 128 | RICHARDSON D L, CARY N D. A uniformly valid solution for motion about the interior libration point of the perturbed elliptic–restricted problem. Proc. of the AIAA Conference on the Exploration of the Outer Planets, 1975: 28-30. | 
| 129 | MARKELLOS V V. Asymmetric periodic orbits in three dimensions. Monthly Notices of the Royal Astronomical Society, 1978, 184(2): 273–281. | 
| 130 | HOWELL K C. Three–dimensional, periodic, ‘halo’ orbits. Celestial Mechanics, 1984, 32(1): 53–71. | 
| 131 | MARKELLOS V V. Numerical investigation of the planar restricted three–body problem. II. Regions of stability for retrograde satellites of Jupiter as determined by periodic orbits of the second generation. Celestial Mechanics, 1974, 10(1): 365–380. | 
| 132 | MARKELLOS V V. Numerical investigation of the planar restricted three–body problem. I. Periodic orbits of the second generation in the Sun–Jupiter system. Celestial Mechanics, 1974, 10(1): 87–134. | 
| 133 | MARKELLOS V V. Numerical investigation of the planar restricted three–body problem. III–Closed branches of families f and related periodic orbits of the elliptic problem. Celestial Mechanics, 1975, 12: 215–224. | 
| 134 | HENON M, LUTZE F. Generating families in the restricted three–body problem, II: quantitative study of bifurcations. Applied Mechanics Reviews, 2002, 55(6): B107. | 
| 135 | KANAVOS S S, MARKELLOS V V, PERDIOS E A, et al. The photogravitational Hill problem: numerical exploration. Earth Moon & Planets, 2002, 91(4): 223–241. | 
| 136 | RUSSELL R P. Global search for planar and three–dimensional periodic orbits near Europa. Proc. of the AAS/AIAA Astrodynamics Specialist Conference, 2005: 645–672. | 
| 137 | RUSSELL R P. Global search for planar and three–dimensional periodic orbits near Europa. The Journal of the Astronautical Sciences, 2006, 54(2): 199–226. | 
| 138 | HENON M. Explorationes numerique du probleme restreint IV: masses egales, orbites non periodique,. Bullettin Astronomique, 1966, 3(1): 49–66. | 
| 139 | YU Y, BAOYIN H. Generating families of 3D periodic orbits about asteroids. Monthly Notices of the Royal Astronomical Society, 2012, 427(1): 872–881. | 
| 140 | YU Y, BAOYIN H. Orbital dynamics in the vicinity of asteroid 216 Kleopatra. The Astronomical Journal, 2012, 143(3): 62. | 
| 141 | YU Y, BAOYIN H. Resonant orbits in the vicinity of asteroid 216 Kleopatra. Astrophysics and Space Science, 2013, 343(1): 75–82. | 
| 142 | JIANG Y, BAOYIN H, LI J, et al. Orbits and manifolds near the equilibrium points around a rotating asteroid. Astrophysics and Space Science, 2014, 349(1): 83–106. | 
| 143 | PAVLAK T A. Trajectory design and orbit maintenance strategies in multi–body dynamical regimes. Indiana: Purdue University, 2013. | 
| 144 | SERBAN R, KOON W S, LO M W, et al. Halo orbit mission correction maneuvers using optimal control. Automatica, 2002, 38(4): 571–583. | 
| 145 | SHIROBOKOV M, TROFIMOV S, OVCHINNIKOV M. Survey of station–keeping techniques for libration point orbits. Journal of Guidance, Control, and Dynamics, 2017, 40(5): 1085–1105. | 
| 146 | XU M. Stationkeeping strategy of halo orbit in linear periodic control. Aerospace Control, 2008, 26(3): 13–18. | 
| 147 | XU M, ZHOU N, WANG J. Robust adaptive strategy for stationkeeping of halo orbit. Proc. of the IEEE 24th Chinese Control and Decision Conference, 2012: 3086–3091. | 
| 148 | XU L. How China’s lunar relay satellite arrived in its final orbit. https://www.planetary.org/articles/ 20180615–queqiao–orbit–explainer. | 
| 149 | HOU X Y, LIU L. On the transfer and control of spacecrafts around the point of the sun–earth+moon system. Acta Astronomica Sinica, 2007, 48: 364–373. | 
| 150 | GOMEZ G, HOWELL K, MASDEMONT J, et al. Station–keeping strategies for translunar libration point orbits. Advances in Astronautical Sciences, 1998, 99(2): 949–967. | 
| 151 | HEUBERGER H. Halo orbit station keeping for international sun–earth explorer-C/ISEE-C. Proc. of the AAS/AIAA Astrodynamics Specialist Conference, 1977: 77–165. | 
| 152 | XU M. Overview of orbital dynamics and control for libration point orbits. Journal of Astronautics, 2009, 30(4): 1300–1313. | 
| 153 | HOWELL K C, PERNICKA H J. Station–keeping method for libration point trajectories. Journal of Guidance, Control, and Dynamics, 1993, 16(1): 151–159. | 
| 154 | HOWELL K C, MAINS D L, BARDEN B T. Transfer trajectories from Earth parking orbits to Sun–Earth halo orbits. Proc. of the AAS/AIAA Astrodynamics Specialist Conference, 1994: 94–160. | 
| 155 | KEETER T M. Station–keeping strategies for libration point orbits–target point and floquet mode approaches. Indiana: Purdue University, 1994. | 
| 156 | GOMEZ G, LLIBRE J, MARTINEZ R, et al. Station keeping of a quasiperiodic halo orbit using invariant manifolds. Proc. of the 2nd International Symposium on Spacecraft Flight Dynamics, 1986: 65–70. | 
| 157 | SIMO C, GOMEZ G, LLIBRE J, et al. On the optimal station keeping control of halo orbits. Acta Astronautica, 1987, 15(6/7): 391–397. | 
| 158 | GOMEZ G, JORBA A, SIMO C, et al. Study of the transfer between halo orbits. Acta Astronautica, 1998, 43(9/10): 493–520. | 
| 159 | JANES L, BECKMAN M. Stationkeeping maneuvers for the James Webb Space Telescope. Proc. of the Goddard Flight Mechanics Symposium, 2005: 1–16. | 
| 160 | FOLTA D, WOODARD M, COSGROVE D. Stationkeeping of the first earth–moon libration orbiters: the artemis mission. Proc. of the Advances in the Astronautical Sciences, 2011: AAS 11–515. | 
| 161 | FOLTA D C, WOODARD M, PAVLAK T, et al. Earth–moon libration stationkeeping: theory, modeling, and operations. Advances in the Astronautical Sciences, 2012, 145: 489–507. | 
| 162 | SCHEERES D J, HSIAO F Y, VINH N X. Stabilizing motion relative to an unstable orbit: applications to spacecraft formation flight. Journal of Guidance, Control, and Dynamics, 2003, 26(1): 62–73. | 
| 163 | WIE B, BYUN K W, WARREN V W, et al. New approach to attitude/momentum control for the space station. Journal of Guidance, Control, and Dynamics, 1989, 12(5): 714–722. | 
| 164 | WARREN W, WIE B, GELLER D. Periodic–disturbance accommodating control of the space station for asymptotic momentum management. Journal of Guidance, Control, and Dynamics, 1990, 13(6): 984–992. | 
| 165 | WIE B, GONZALEZ M. Control synthesis for flexible space structures excited by persistent disturbances. Journal of Guidance, Control, and Dynamics, 1992, 15(1): 73–80. | 
| 166 | WIE B, LIU Q, BAUER F. Classical and robust H (infinity) control redesign for the hubble space telescope. Journal of Guidance, Control, and Dynamics, 1993, 16(6): 1069–1077. | 
| 167 | CIELASZYK D, WIE B. New approach to halo orbit determination and control. Journal of Guidance, Control, and Dynamics, 1996, 19(2): 266–273. | 
| 168 | HOFFMAN D. Station–keeping at the collinear equilibrium points of the earth–moon system. Huston: NASA, 1993. | 
| 169 | FOLTA D, BECKMAN M. Libration orbit mission design: applications of numerical and dynamical methods. Singapore: World Scientific, 2003. | 
| 170 | ROSS S, LO M, ROSS S. The lunar gateway: portal to the stars and beyon. Proc. of the AIAA Space Conference and Exposition, 2001. DOI: 10.2514/6.2001–4768. | 
| 171 | RENAULT C A, SCHEERES D J. Statistical analysis of control maneuvers in unstable orbital environments. Journal of Guidance, Control, and Dynamics, 2003, 26(5): 758–769. | 
| 172 | GERARD G, JAUME L, MARTINEZ R. Dynamics and mission design near libration points: fundamentals–the case of collinear libration points. Singapore: World Scientific, 2001. | 
| 173 | GOMEZ G, LLIBRE J, MARTINEZ R, et al. Dynamics and mission design near libration points: fundamentals–the case of triangular libration points. Singapore: World Scientific, 2001. | 
| 174 | MARCHAND B. Spacecraft formation keeping near the libration points of the sun–earth/moon system. Indiana: Purdue University, 2004. | 
| 175 | MARCHAND B G, HOWELL K C. Formation flight near and in the sun–earth/moon ephemeris system including solar radiation pressure. Proc. of the AAS Astrodynamics Specialist Conference, 2004: AAS 03-596. | 
| 176 | FOLTA D, VAUGHN F. A survey of earth–moon libration orbits: stationkeeping strategies and intra–orbit transfers. Proc. of the AIAA/AAS Astrodynamics Specialist Conference and Exhibit, 2004: 4741. | 
| 177 | HAMILTON N, FOLTA D, CARPENTER R. Formation flying satellite control around the sun–earth libration point. Proc. of the AIAA/AAS Astrodynamics Specialist Conference and Exhibit, 2002: 4528. | 
| 178 | FOLTA D C, PAVLAK T A, HOWELL K C, et al. Stationkeeping of lissajous trajectories in the Earth–Moon system with applications to ARTEMIS. Proc. of the Advances in the Astronautical Sciences, 2010: AAS 10–113. | 
| 179 | FOLTA D C, BOSANAC N, GUZZETTI D, et al. An earth–moon system trajectory design reference catalog. Acta Astronautica, 2015, 110: 341–353. | 
| 180 | PAVLAK T A, HOWELL K C. Strategy for long–term libration point orbit stationkeeping in the Earth–Moon system. Advances in the Astronautical Sciences, 2011, 142: 1717–1734. | 
| 181 | FOLTA D C, WOODARD M, HOWELL K, et al. Applications of multi–body dynamical environments: the ARTEMIS transfer trajectory design. Acta Astronautica, 2012, 73: 237–249. | 
| 182 | SIBECK D G, ANGELOPOULOS V, BRAIN D A, et al. The ARTEMIS mission. New York: Springer, 2011. | 
| 183 | HOWELL K C, FARQUHAR R W, BREAKWELL J. The restricted problem, and halo orbits. Acta Astronautica, 1993, 29(6): 485–488. | 
| 184 | PRIETO T, GOMEZ G Stationkeeping at libration points of natural elongated bodies. Journal of Guidance, Control, and Dynamics, 1994, 17 (4): 787- 794. | 
| 185 | SCHEERES D J, HAN D, HOU Y. Influence of unstable manifolds on orbit uncertainty. Journal of Guidance, Control, and Dynamics, 2001, 24(3): 573–585. | 
| 186 | OZIMEK M T. Low–thrust trajectory design and optimization of lunar south pole coverage missions. Indiana: Purdue University, 2010. | 
| 187 | DUNHAM D W, FARQUHAR R W. Libration point missions, 1978–2002. Singapore: World Scientific, 2003. | 
| 188 | KOON W S, LO M W, MARSDEN J E, et al. Dynamical systems, the three–body problem and space mission design. Singapore: World Scientific, 2000. | 
| 189 | GOMEZ G, JORBA A, SOLER J M, et al. Dynamics and mission design near libration points: advanced methods for collinear points. Singapore: World Scientific, 2001. | 
| 190 | GOMEZ G, LO M W, ROSS S D, et al. Invariant manifolds, the spatial three–body problem and petit grand tour of jovian moons. https://authors.library.caltech.edu/20313/1/GoKoLoMaMaRo2003.pdf. | 
| 191 | KOON W S, LO M W, MARSDEN J E, et al. Dynamical systems, the three–body problem and space mission design. Pasadena: California Institute of Technology, 2006. | 
| 192 | OZIMEK M T, HOWELL K C. Low–thrust transfers in the Earth–Moon system, including applications to libration point orbits. Journal of Guidance, Control, and Dynamics, 2010, 33(2): 533–549. | 
| 193 | BARDEN B, HOWELL LO K M. Application of dynamical systems theory to trajectory design for a libration point mission. The Journal of the Astronautical Sciences, 1997, 45(2): 161–178. | 
| 194 | TOPPUTO F, VASILE M, BERNELLI–ZAZZERA F. Low energy interplanetary transfers exploiting invariant manifolds of the restricted three–body problem. Journal of the Astronautical Sciences, 2005, 53(4): 353–372. | 
| 195 | PARKER J S, ANDERSON R L. Low–energy lunar trajectory design. Hoboken: John Wiley & Sons, 2014. | 
| 196 | TOPPUTO F, ZHANG R Y. Approximation of invariant manifolds by cubic convolution interpolation. Proc. of the 25th AAS/AIAA Space Flight Mechanics Meeting, 2015: 283–291. | 
| 197 | KOON W S, LO M W, MARSDEN J E, et al. Low energy transfer to the Moon. Celestial Mechanics and Dynamical Astronomy, 2001, 81(1/2): 63–73. | 
| 198 | MINGOTTI G, SANCHEZ J P, MCINNES C. Low energy, low–thrust capture of near earth objects in the sun–earth and earth–moon restricted three–body systems. Proc. of the AIAA/AAS Astrodynamics Specialist Conference, 2014: 4301. | 
| 199 | HOWELL K C, KAKOI M. Transfers between the Earth–Moon and Sun–Earth systems using manifolds and transit orbits. Acta Astronautica, 2006, 59(1/5): 367–380. | 
| 200 | ZHENG Y, LI Q L, XU M, et al. An integrated simulation system for operating solar sail spacecraft. Journal of Systems Engineering and Electronics, 2021, 32(5): 1200–1211. | 
| 201 | YUNPENG H U, KEBO L I, LIANG Y, et al. Review on strategies of space–based optical space situational awareness. Journal of Systems Engineering and Electronics, 2021, 32(5): 1152–1166. | 
| 202 | LIU Q, LIU X, JIAN W U, et al. A fast computational method for the landing footprints of space–to–ground vehicles. Journal of Systems Engineering and Electronics, 2020, 31(5): 1062–1076. | 
| 203 | LI J T, ZHANG S, LIU X L, et al. Multi–objective evolutionary optimization for geostationary orbit satellite mission planning. Journal of Systems Engineering and Electronics, 2017, 28(5): 934–945. | 
| 204 | ZHAI G, ZHANG J R, ZHOU Z C. On–orbit target tracking and inspection by satellite formation. Journal of Systems Engineering and Electronics, 2013, 24(6): 879–888. | 
| 205 | ZHANG R Y, WEI C S, YIN Z Y. On–orbit target tracking and inspection by satellite formation adaptive quasi fixed–time orbit control around asteroid with performance guarantees. Computer Modeling in Engineering & Sciences, 2020, 122(1): 89–107. | 
| 206 | FARQUHAR R W, MUHONEN D, RICHARDSON D. Mission design for a halo orbiter of the Earth. Journal of Spacecraft and Rockets, 1977, 14: 170–177. | 
| 207 | RICHARDSON D L. Halo orbit formulation for the ISEE–3 mission. Journal of Guidance, Control, and Dynamics, 1980, 3(6): 543–548. | 
| 208 | RICHARDSON D L. Analytic construction of periodic orbits about the collinear points. Celestial Mechanics, 1980, 22(3): 241–253. | 
| 209 | HOWELL C K. Three–dimensional, periodic halo orbits in the restricted three–body problem. California: Stanford University, 1983. | 
| 210 | KAKOI M. Design of transfers from Earth–Moon / libration point orbits to a destination object. Indiana: Purdue University, 2015. | 
| 211 | BOSANAC N. Leveraging natural dynamical structures to explore multi–body systems. Indiana: Purdue University, 2016. | 
| 212 | BARDEN B T, HOWELL K C, LO M W. Application of dynamical systems theory to trajectory design for a libration point mission. Journal of the Astronautical Sciences, 1996, 45(2): 161–178. | 
| 213 | GALBO P L, BOUFFARD M. SOHO–a cooperative scientific mission to the sun. ESA Bulletin, 1992, 71: 21–25. | 
| 214 | LANG K R. SOHO reveals the secrets of the Sun. Scientific American, 1997, 276 (3): 40–47. | 
| 215 | CREDLAND J, FELICI F, GRENSEMANN M, et al. Three missions, three launches, six spacecraft for science in 1995. ESA Bulletin, 1995, 82: 36–47. | 
| 216 | NASA. 3, 000th Comet spotted by solar and heliospheric observatory (soho). https://en.wikipedia.org/wiki/Solar_and_Heliospheric_Observatory#cite_ref–navy_2–0. | 
| 217 | LUIGI C. Extended life for ESA’s science missions. http://sci.esa.int/director–desk/60943– extended–life–for–esas–science–missions/#1. | 
| 218 | USA Today. Satellite to aid space weather forecasting. https://www.usatoday.com/weather/solar/wswx198.htm. | 
| 219 | ZAZZERA F B, TOPPUTO F, MASSARI M. Assessment of mission design including utilization of libration points and weak stability boundaries. http://www.esa.int/gsp/ACT/doc/ARIADNA-RPT-03-4103-MilanoUni_InterplanetaryHighways-.pdf. | 
| 220 | CHRISTIAN E R, DAVIS A J. Advanced composition explorer (ACE) mission overview. https://izw1.caltech.edu/ACE/ace_mission.html. | 
| 221 | SPERGEL D N, VERDE L, PEIRIS H V, et al. First–year wilkinson microwave anisotropy probe (WMAP)* observations: determination of cosmological parameters. The Astrophysical Journal Supplement Series, 2003, 148(1): 175–194. | 
| 222 | SPERGEL D N, BEAN R, DORE O, et al. Three–year wilkinson microwave anisotropy probe (WMAP) observations: implications for cosmology. The Astrophysical Journal Supplement Series, 2007, 170(2): 377–408. | 
| 223 | WILLIAMS K, WILSON R, LO M, et al. Genesis halo orbit station keeping design. Spaceflight Dynamics. http://hdl.handle.net/2014/15031. | 
| 224 | HECHLER M, COBOS J. Herschel, Planck and Gaia orbit design. http://www.ieec.cat/hosted/web–libpoint/presentacions/hechler.pdf. | 
| 225 | HOUGHTON M B. Getting to the hard way: triana’s launch options. https://ntrs.nasa.gov/api/citations/20020081116/downloads /20020081116.pdf. | 
| 226 | COLLABORATION T P. The Scientific programme of planck. https://arxiv.org/ftp/astro–ph/papers/0604/0604069.pdf. | 
| 227 | DOYLE D, PILBRATT G, TAUBER J. The herschel and planck space telescopes. Proceedings of the IEEE, 2009, 97(8): 1403–1411. | 
| 228 | BAUSKE R. Operational manoeuvre optimization for the ESA missions herschel and planck. https://www.issfd.org/ISSFD_2009/InterMissionDesignI /Bauske.pdf. | 
| 229 | TAUBER J A, MANDOLESI N, PUGET J L, et al. Planck pre–launch status: the Planck mission. Astronomy & Astrophysics, 2010, 520(1): 852–861. | 
| 230 | GRIFFIN M J, ABERGEL A, ABREU A, et al. The Herschel–SPIRE instrument and its in–flight performance. Astronomy & Astrophysics, 2017, 518(3): 383–416. | 
| 231 | PILBRATT G L, RIEDINGER J R, PASSVOGEL T, et al. Herschel space observatory–an ESA facility for far–infrared and submillimetre astronomy. Astronomy & Astrophysics, 2010, 518(3): 383–416. | 
| 232 | ROTHMAN L S, GORDON I E, BABIKOV Y, et al. The HITRAN2012 molecular spectroscopic database. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 130: 4–50. | 
| 233 | ADE P A R, AGHANIM N, ALVES M I R, et al. Planck 2013 results. I. Overview of products and results. https://www.aanda.org/articles/aa/full_ht ml/2014/11/aa21529–13/aa21529–13.html. | 
| 234 | LIU L, LIU Y, CAO J F, et al. CHANG’E–2 lunar escape maneuvers to the Sun–Earth libration point mission. Acta Astronautica, 2014, 93: 390–399. | 
| 235 | ZHAO B C, YANG J F, WEN D S, et al. Overall scheme and on–orbit images of Chang’E–2 lunar satellite CCD stereo camera. Science China Technological Sciences, 2011, 54(9): 2237. | 
| 236 | WU B, HU H, GUO J. Integration of Chang’E–2 imagery and LRO laser altimeter data with a combined block adjustment for precision lunar topographic modeling. Earth and Planetary Science Letters, 2014, 391: 1–15. | 
| 237 | HUANG J C, JI J H, YE P J, et al. The ginger–shaped asteroid 4179 toutatis: new observations from a successful flyby of Chang’e–2. Scientific Reports, 2013, 3(1): 1–6. | 
| 238 | PERRYMAN M A C, BOER K S, GILMORE G, et al. GAIA: composition, formation and evolution of the Galaxy. Astronomy & Astro–physics, 2001, 369(1): 339–363. | 
| 239 | PRUSTI T, BRUIJNE J H J, BROWN A G A, et al. The gaia mission. Astronomy & Astrophysics, 2016, 595: A1. | 
| 240 | BRUIJNE J H J. Science performance of Gaia, ESA’s space–astrometry mission. Astrophysics and Space Science, 2012, 341(1) : 31–41. | 
| 241 | SOZZETTI A, CASERTANO S, LATTANZI M G, et al. Detection and measurement of planetary systems with GAIA. Astronomy & Astrophysics, 2001, 373(3): L21. | 
| 242 | ESA. Mission operations: overview. http://sci.esa.int/lisa–pathfinder/31436–overview/. | 
| 243 | RUDOLPH A. LISA pathfinder launch and early operations phase–in–orbit experience. Proc. of the 14th International Conference on Space Operations, 2016: 2412. | 
| 244 | ROBERTS C, CASE S, REAGOSO J, et al. Early mission maneuver operations for the deep space climate observatory sun–earth libration point mission. Proc. of the AIAA/AAS Astrodynamics Specialist Conference, 2015: AAS 15–613. | 
| 245 | BURT J, SMITH B. Deep space climate observatory: the DSCOVR mission. Proc. of the IEEE Aerospace Conference, 2012. DOI: 10.1109/AERO.2012.6187025. | 
| 246 | ROBERTS C, CASE S, REAGOSO J. Lissajous orbit control for the deep space climate observatory sun–earth libration point mission. Proc. of the AIAA/AAS Astrodynamics Specialist Conference, 2015: AAS 15–611. | 
| 247 | SWEETSER T H, BROSCHART S B, ANGELOPOULOS V, et al. ARTEMIS mission design. New York: Springer, 2012. | 
| 248 | EOPANGELOPOULOS V. The ARTEMIS mission. http://www.igpp.ucla.edu/public/THEMIS/SCI/Pubs /artemis/The_ARTEMIS_Mission_SSR_accepted. pdf. | 
| 249 | Science & Technology. Queqiao: the bridge between Earth and the far side of the moon. https://phys.org/news/2021–06–queqiao–bridge–earth–side–moon.html. | 
| 250 | XU L. Chang’e 4 relay satellite, Queqiao: a bridge between Earth and the mysterious lunar farside. http://www. planetary.org/blogs/ guest–blogs/2018/0519–change–4–relay– satellite.html. | 
| 251 | JONES A. Queqiao update: Chang’e–4 lunar relay satellite establishing halo orbit after approaching La–grange point.https://gbtimes.com/ queqiao– update–change–4–lunar–relay–satellite–establishing–halo–orbit–after–approaching–lagrange–point. | 
| 252 | NASA. About the James Webb space telescope. https://jwst.nasa.gov/about.html. | 
| 253 | NASA. Webb vs Hubble Telescope. https://jwst.nasa.gov/content/about/comparisonWebbVsHubble.html. | 
| 254 | NASA. International x–ray observatory. https://asd.gsfc.nasa.gov/archive/ixo/. | 
| 255 | KUNIEDA H, WHITE N, PARMAR A. Announcing: the international x–ray observatory (IXO), Goddard Space Flight Center. https://asd.gsfc.nasa.gov/archive/ixo/news/2008/ixo_announcement.html. | 
| 256 | CARPENTER K G, SCHRIJVER C J, KAROVSKA M. The stellar imager (SI) project: a deep space UV/optical interferometer (UVOI) to observe the universe at 0.1 milli–arcsec angular resolution. Astrophysics and Space Science, 2009, 320(1–3): 217–223. | 
| 257 | CHRISTENSEN–DALSGAARD J, CARPENTER K G, SCHRIJVER C J, et al. The stellar imager (SI)–a mission to resolve stellar surfaces, interiors, and magnetic activity. Journal of Physics Conference Series, 2011, 271(1): 012085. | 
| 258 | CARPENTER K G, SCHRIJVER C J, KAROVSKA M. The stellar imager (SI) vision mission. Advances in Stellar Interferometry, 2006, 6268: 610–621. | 
| 259 | CARPENTER K G, SCHRIJVER C J, LYON R G, et al. The stellar imager (SI) mission concept. Proc. of the International Society for Optics and Photonics, 2003: 293–303. | 
| 260 | CHRISTOPHE B, ANDERSEN P H, ANDERSON J D, et al. Odyssey: a solar system mission. Experimental Astronomy, 2009, 23(2): 529–547. | 
| 261 | FAVATA F. The Eddington baseline mission. Stellar Structure and Habitable Planet Finding, 2002, 485: 3–10. | 
| 262 | HARRISON F A, CRAIG W W, CHRISTENSEN F E, et al. The nuclear spectroscopic telescope array (NuSTAR) high–energy X–ray mission. The Astrophysical Journal, 2013, 770(2): 103. | 
| 263 | ESA. Darwin: study ended, no further activities planned. http://www.esa.int/Our_Activities/ Space_Science/Darwin_overview. | 
| 264 | MULLEN L. Rage against the dying of the light. https://www.astrobio.net/news–exclusive/rage–against–the–dying–of–the–light/. | 
| 265 | LAWSON P R, DOOLEY J A. Technology plan for the terrestrial planet finder interferometer. California: Jet Propulsion Laboratory, 2005. | 
| [1] | Xiaolong SU, Zhen LIU, Bin SUN, Yang WANG, Xin CHEN, Xiang LI. Fast BSC-based algorithm for near-field signal localization via uniform circular array [J]. Journal of Systems Engineering and Electronics, 2022, 33(2): 269-278. | 
| [2] | Kwame Bensah KULEVOME Delanyo, Hong WANG, Xuegang WANG. Deep neural network based classification of rolling element bearings and health degradation through comprehensive vibration signal analysis [J]. Journal of Systems Engineering and Electronics, 2022, 33(1): 233-246. | 
| [3] | Shuai SHAO, Aijun LIU, Changjun YU, Quanrui ZHAO. Polarization quaternion DOA estimation based on vector MISC array [J]. Journal of Systems Engineering and Electronics, 2021, 32(4): 764-778. | 
| [4] | Jafar NOROLAHI, Paeiz AZMI, Farzaneh AHMADI. Automatic modulation classification using modulation fingerprint extraction [J]. Journal of Systems Engineering and Electronics, 2021, 32(4): 799-810. | 
| [5] | Yiming LI, Liping DU, Yueyun CHEN. A pilot allocation method for multi-cell multi-user massive MIMO system [J]. Journal of Systems Engineering and Electronics, 2021, 32(2): 399-407. | 
| [6] | Wantian WANG, Ziyue TANG, Yichang CHEN, Yongjian SUN. Parity recognition of blade number and manoeuvre intention classification algorithm of rotor target based on micro-Doppler features using CNN [J]. Journal of Systems Engineering and Electronics, 2020, 31(5): 884-889. | 
| [7] | Qiuchen LIU, Yong WANG, Qingxiang ZHANG. ISAR cross-range scaling based on the MUSIC technique [J]. Journal of Systems Engineering and Electronics, 2020, 31(5): 928-938. | 
| [8] | Mengfan XUE, NLei HA, Dongliang PENG. A combined algorithm of K-means and MTRL for multi-class classification [J]. Journal of Systems Engineering and Electronics, 2019, 30(5): 875-885. | 
| [9] | Binquan LI, Xiaohui HU. Effective distributed convolutional neural network architecture for remote sensing images target classification with a pre-training approach [J]. Journal of Systems Engineering and Electronics, 2019, 30(2): 238-244. | 
| [10] | Long Li, Zheng Liu, and Tao Li. Radar high resolution range profile recognition via multi-SV method [J]. Systems Engineering and Electronics, 2017, 28(5): 879-889. | 
| [11] | Jujie Zhang, Min Fang, and Huimin Chai. Multi-label local discriminative embedding [J]. Systems Engineering and Electronics, 2017, 28(5): 1009-1018. | 
| [12] | Chongsheng Zhang, Pengyou Wang, Ke Chen, and Joni-Kristian K¨am¨ ar¨ainen. Identity-aware convolutional neural networks for facial expression recognition [J]. Systems Engineering and Electronics, 2017, 28(4): 784-. | 
| [13] | Jichao Zhao and Haihong Tao. Quaternion based joint DOA and polarization parameters estimation with stretched three-component electromagnetic vector sensor array [J]. Systems Engineering and Electronics, 2017, 28(1): 1-. | 
| [14] | Bendong Zhao, Huanzhang Lu, Shangfeng Chen, Junliang Liu, and Dongya Wu. Convolutional neural networks for time series classification [J]. Systems Engineering and Electronics, 2017, 28(1): 162-. | 
| [15] | Wenlong Lu, Junwei Xie, Heming Wang, and Chuan Sheng. Cognate pulse sorting method based on beam missions characteristics [J]. Journal of Systems Engineering and Electronics, 2016, 27(6): 1183-1190. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||
