Journal of Systems Engineering and Electronics ›› 2024, Vol. 35 ›› Issue (1): 1-13.doi: 10.23919/JSEE.2024.000026
• RADAR DETECTION AND INTERFERENCE SUPPRESSION •
Received:
2023-09-12
Accepted:
2024-02-04
Online:
2024-02-18
Published:
2024-03-05
Contact:
Yong YANG
E-mail:youngtfvc@163.com;yangby1997@163.com
About author:
Supported by:
Yong YANG, Boyu YANG. Overview of radar detection methods for low altitude targets in marine environments[J]. Journal of Systems Engineering and Electronics, 2024, 35(1): 1-13.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Various features used for detector designs"
Signal domain | Signal feature |
Time domain | Amplitude distribution, Relative mean amplitude [ |
Frequency domain | Relative Doppler peak height [ domain Hurst index [ |
Polarization domain | Relative volume scattering power [ Relative surface scattering power [ entropy [ |
Transform domain | Fractal features [ |
Time frequency domain | Micro-Doppler [ frequency biplot [ |
1 | DING L F, GENG F L, CHEN J C. Principle of radar. 6th ed. Beijing: Publishing House of Electronic Industry, 2020. (in Chinese) |
2 |
LEUNG H Nonlinear clutter cancellation and detection using a memory-based predictor. IEEE Trans. on Aerospace and Electronic Systems, 1996, 32 (4): 1249- 1256.
doi: 10.1109/7.543846 |
3 |
LEUNG H, YOUNG A Small target detection in clutter using recursive nonlinear prediction. IEEE Trans. on Aerospace and Electronic Systems, 2000, 36 (2): 713- 718.
doi: 10.1109/7.845269 |
4 |
PANAGOPOULOS S, SORAGHAN J J Small-target detection in sea clutter. IEEE Trans. on Geoscience and Remote Sensing, 2004, 42 (7): 1355- 1361.
doi: 10.1109/TGRS.2004.827259 |
5 | CRANE M K, MOORADD D C, RAMIREZ M D. A polarization technique for mitigating low-grazing-angle radar sea clutter. Proc. of the IEEE MTT-S International Microwave Symposium, 2017: 333–335. |
6 |
CHEONG J W, SOUTHWELL B J, DEMPSTER A G Blind sea clutter suppression for spaceborne GNSS-R target detection. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12 (12): 5373- 5378.
doi: 10.1109/JSTARS.2019.2956183 |
7 |
HU J F, JIAN C, ZHUO C, et al Knowledge-aided ocean clutter suppression method for sky-wave over-the-horizon radar. IEEE Geoscience and Remote Sensing Letters, 2018, 15 (3): 355- 358.
doi: 10.1109/LGRS.2017.2787693 |
8 | HUANG Y, PENG Y N, WANG X T, et al Adaptive clutter suppression method for airborne radar based on frequency domain processing. Systems Engineering and Electronics, 2000, 22 (12): 4- 6. |
9 |
POON M W Y, KHAN R H, LE-NGOC S A singular value decomposition (SVD) based method for suppressing ocean clutter in high frequency radar. IEEE Trans. on Signal Processing, 1993, 41 (3): 1421- 1425.
doi: 10.1109/78.205747 |
10 | YANG Y, XIAO S P, WANG X S Radar detection of small target in sea clutter using orthogonal projection. IEEE Geoscience and Remote Sensing Letters, 2018, 16 (3): 382- 386. |
11 |
YI C L, JI Z Y, KIRUBARAJAN T, et al An improved oblique projection method for sea clutter suppression in shipborne HFSWR. IEEE Geoscience and Remote Sensing Letters, 2016, 13 (8): 1089- 1093.
doi: 10.1109/LGRS.2016.2566660 |
12 |
ALKU L, MOISSEEV D, AITTOMÄKI T, et al Identification and suppression of nonmeteorological echoes using spectral polarimetric processing. IEEE Trans. on Geoscience and Remote Sensing, 2015, 53 (7): 3628- 3638.
doi: 10.1109/TGRS.2014.2380476 |
13 |
NOVAK L M, SECHTIN M B, CARDULLO M J Studies of target detection algorithms that use polarimetric radar data. IEEE Trans. on Aerospace and Electronic Systems, 1989, 25 (2): 150- 165.
doi: 10.1109/7.18677 |
14 | WANG J, ZHANG Q Y, CAO B. Multi-notch polarization filtering based on oblique projection. Proc. of the Global Mobile Congress, 2009. DOI: 10.1109/GMC.2009.5295831. |
15 | MAO X P, LIU A J, HOU H J, et al. Oblique projection polarisation filtering for interference suppression in high-frequency surface wave radar. IET Radar, Sonar & Navigation, 2012, 6(2): 71–80. |
16 | YANG Y, WANG X S, SHI L F, et al. A method for radar-based fixed-wing UAV and clutter identification using dual polarization characteristics. China: ZL201910801086.0. 2021−08−24. (in Chinese) |
17 |
MCDONALD M K, CERUTTI-MAORI D Coherent radar processing in sea clutter environments, part I: modelling and partially adaptive STAP performance. IEEE Trans. on Aerospace and Electronic Systems, 2016, 52 (4): 1797- 1817.
doi: 10.1109/TAES.2016.140897 |
18 |
YASOTHARAN A, THAYAPARAN T Time-frequency method for detecting an accelerating target in sea clutter. IEEE Trans. on Aerospace and Electronic Systems, 2006, 42 (4): 1289- 1310.
doi: 10.1109/TAES.2006.314573 |
19 | WANG W P, FENG Y, SHAN T A sea clutter suppression method using improved time-frequency filtering method. Journal of Signal Processing, 2019, 35 (2): 208- 216. |
20 |
DUK V, ROSENBERG L, NG B W H Target detection in sea-clutter using stationary wavelet transforms. IEEE Trans. on Aerospace and Electronic Systems, 2017, 53 (3): 1136- 1146.
doi: 10.1109/TAES.2017.2667558 |
21 |
PARK H R, KWAK Y G, WANG H Efficient joint polarisation-space-time processor for nonhomogeneous clutter environments. Electronics Letters, 2002, 38 (25): 1714- 1715.
doi: 10.1049/el:20021116 |
22 |
PARK H R, WANG H Adaptive polarisation-space-time domain radar target detection in inhomogeneous clutter environments. IEE-Radar, Sonar & Navigation, 2006, 153 (1): 35- 43.
doi: 10.1049/ip-rsn:20050018 |
23 | SKOLNIK M I. Radar handbook. 3rd ed. Columbus: McGraw Hill, 2008. |
24 | WANG Y L, DING Q J, LI R F. Adaptive array processing. Beijing: Tsinghua University Press, 2009. (in Chinese) |
25 |
NOVAK L M, BURL M C Optimal speckle reduction in polarimetric SAR imagery. IEEE Trans. on Aerospace and Electronic Systems, 1990, 26 (2): 293- 305.
doi: 10.1109/7.53442 |
26 |
ZEBKER H A, VAN ZYL J J, HELD D N Imaging radar polarimetry from wave synthesis. Journal of Geophysical Research: Solid Earth, 1987, 92 (B1): 683- 701.
doi: 10.1029/JB092iB01p00683 |
27 | BOERNER W M, KOSTINSKI A B, JAMES B D. On the concept of the polarimetric matched filter in high resolution radar imaging: an alternative for speckle reduction. Proc. of the International Geoscience and Remote Sensing Symposium, 1988: 69–72. |
28 | LI Y Z, CHENG X, LI M Q, et al A study on polarization gain for radar targets detection. Modern Radar, 2013, 35 (2): 35- 39. |
29 | TAO R, MA J M, DENG B, et al. Fractional Fourier transform and its application. 2nd ed. Beijing: Tsinghua University Press, 2022. (in Chinese) |
30 |
XU J, YAN L, ZHOU X, et al Adaptive Radon-Fourier transform for weak radar target detection. IEEE Trans. on Aerospace and Electronic Systems, 2018, 54 (4): 1641- 1663.
doi: 10.1109/TAES.2018.2798358 |
31 | KAY S M. Fundamental of statistical signal processing volume II: detection theory. Upper Saddle River: Prentice Hall. 1998. |
32 | LIU W J, LIU J, HAO C P, et al. Multichannel adaptive signal detection: basic theory and literature review. Science China (Information Sciences), 2022, 65: 121301. |
33 | XU S W, BAI X H, GUO Z X, et al Status and prospects of feature-based detection methods for floating targets on the sea surface. Journal of Radars, 2020, 9 (4): 684- 714. |
34 |
ROBEY F C, FUHRMANN D R, KELLY E J, et al A CFAR adaptive matched filter detector. IEEE Trans. on Aerospace and Electronic Systems, 1992, 28 (1): 208- 216.
doi: 10.1109/7.135446 |
35 |
SABAHI M F, HASHEMI M M, SHEIKHI A Radar detection based on Bayesian estimation of target amplitude. IET Radar, Sonar & Navigation, 2008, 2 (6): 458- 467.
doi: 10.1049/iet-rsn:20070108 |
36 |
KRONAUGE M, ROHLING H Fast two-dimensional CFAR procedure. IEEE Trans. on Aerospace and Electronic Systems, 2013, 49 (3): 1817- 1823.
doi: 10.1109/TAES.2013.6558022 |
37 | SCHLEHER D C Radar detection in Weibull clutter. IEEE Trans. on Aerospace and Electronic Systems, 1976, 12 (6): 736- 743. |
38 |
POURMOTTAGHI A, TABAN M R, GAZOR S A CFAR detector in a nonhomogenous Weibull clutter. IEEE Trans. on Aerospace and Electronic Systems, 2012, 48 (2): 1747- 1758.
doi: 10.1109/TAES.2012.6178094 |
39 |
CHEN Z R, CHEN A L, LIU W J, et al CFAR detection in nonhomogeneous Weibull sea clutter for skywave OTHR. IEEE Geoscience and Remote Sensing Letters, 2023, 20
doi: 10.1109/LGRS.2023.3313179 |
40 | DONG Y H Optimal coherent radar detection in a K-distributed clutter environment. IET Radar, Sonar & Navigation, 2012, 6 (5): 283- 292. |
41 | SHI S N, SHUI P L Optimum coherent detection in homogenous K-distributed clutter. IET Radar, Sonar & Navigation, 2016, 10 (8): 1477- 1484. |
42 |
SHUI P L, LIU M, XU S W Shape-parameter-dependent coherent radar target detection in K-distributed clutter. IEEE Trans. on Aerospace and Electronic Systems, 2016, 52 (1): 451- 465.
doi: 10.1109/TAES.2015.140109 |
43 |
XUE J, XU S W, LIU J, et al Bayesian detection for radar targets in compound-Gaussian sea clutter. IEEE Geoscience and Remote Sensing Letters, 2022, 19
doi: 10.1109/LGRS.2022.3140727 |
44 |
XUE J, LI H E, PAN M Y, et al Adaptive persymmetric detection for radar targets in correlated CG-LN sea clutter. IEEE Trans. on Geoscience and Remote Sensing, 2023, 61
doi: 10.1109/TGRS.2023.3303861 |
45 |
SANGSTON K J, GINI F, GRECO M S Coherent radar target detection in heavy-tailed compound-Gaussian clutter. IEEE Trans. on Aerospace and Electronic Systems, 2012, 48 (1): 64- 77.
doi: 10.1109/TAES.2012.6129621 |
46 |
XUE J, LIU J, XU S W, et al Adaptive detection of radar targets in heavy-tailed sea clutter with lognormal texture. IEEE Trans. on Geoscience and Remote Sensing, 2021, 60
doi: 10.1109/TGRS.2021.3137389 |
47 |
XUE J, YAN J L, PAN M Y, et al Knowledge-aided adaptive Gradient test for radar targets in correlated compound Gaussian sea clutter with lognormal texture. IEEE Geoscience and Remote Sensing Letters, 2023, 20
doi: 10.1109/LGRS.2023.3324308 |
48 |
XUE J, XU S W, SHUI P L Near-optimum coherent CFAR detection of radar targets in compound-Gaussian clutter with inverse Gaussian texture. Signal Processing, 2020, 166, 107236.
doi: 10.1016/j.sigpro.2019.07.029 |
49 | GAO Y C, LIAO G S, ZHU S Q Adaptive signal detection in compound-Gaussian clutter with inverse Gaussian texture. Proc. of the 14th International Radar Symposium, 2013, 2, 935- 940. |
50 | XUE J, XU S W, LIU J, et al Model for non-Gaussian sea clutter amplitudes using generalized inverse Gaussian texture. IEEE Geoscience and Remote Sensing Letters, 2018, 16 (6): 892- 896. |
51 | XU S W, WANG Z X, BAI X H, et al Optimum and near-optimum coherent CFAR detection of radar targets in compound-Gaussian clutter with generalized inverse Gaussian texture. IEEE Trans. on Aerospace and Electronic Systems, 2021, 58 (3): 1692- 1706. |
52 |
KONG L J, CUI G L, YANG X B, et al Rao and Wald tests design of polarimetric multiple-input multiple-output radar in compound-Gaussian clutter. IET Signal Processing, 2011, 5 (1): 85- 96.
doi: 10.1049/iet-spr.2009.0271 |
53 |
XUE J, MA M S, LIU J, et al Wald- and Rao-based detection for maritime radar targets in sea clutter with lognormal texture. IEEE Trans. on Geoscience and Remote Sensing, 2022, 60, 5119709.
doi: 10.1109/TGRS.2022.3217615 |
54 | SUN M R, LIU W J, LIU J, et al Rao and Wald tests for target detection in coherent interference. IEEE Trans. on Aerospace and Electronic Systems, 2021, 58 (3): 1906- 1921. |
55 |
LIU J, MASSARO D, ORLANDO D, et al Radar adaptive detection architectures for heterogeneous environments. IEEE Trans. on Signal Processing, 2020, 68, 4307- 4319.
doi: 10.1109/TSP.2020.3009836 |
56 |
SHUI P L, LI D C, XU S W Tri-feature-based detection of floating small targets in sea clutter. IEEE Trans. on Aerospace and Electronic Systems, 2014, 50 (2): 1416- 1430.
doi: 10.1109/TAES.2014.120657 |
57 |
LI Y Z, XIE P C, TANG Z S, et al SVM-based sea-surface small target detection: a false-alarm-rate-controllable approach. IEEE Geoscience and Remote Sensing Letters, 2019, 16 (8): 1225- 1229.
doi: 10.1109/LGRS.2019.2894385 |
58 |
ZHOU H K, JIANG T Decision tree based sea-surface weak target detection with false alarm rate controllable. IEEE Signal Processing Letters, 2019, 26 (6): 793- 797.
doi: 10.1109/LSP.2019.2909584 |
59 | XU S W, ZHU J N, JIANG J Z, et al Sea-surface floating small target detection by multifeature detector based on isolation forest. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 14, 704- 715. |
60 | XU S W, ZHENG J B, PU J, et al Sea-surface floating small target detection based on polarization features. IEEE Geoscience and Remote Sensing Letters, 2018, 15 (10): 1505- 1509. |
61 | CHEN S C, GAO H T, LUO F Target detection in sea clutter based on combined characteristics of polarization. Journal of Radars, 2020, 9 (4): 664- 673. |
62 | LO T, LEUNG H, LITVA J, et al. Fractal characterisation of sea-scattered signals and detection of sea-surface targets. IEE Proceedings F-Radar and Signal Processing, 1993, 140(4): 243–250. |
63 | GUAN J, LIU N B, HUANG Y, et al. Fractal characteristic in frequency domain for target detection within sea clutter. IET Radar, Sonar & Navigation, 2012, 6(5): 293–306. |
64 |
HU J, TUNG W W, GAO J B Detection of low observable targets within sea clutter by structure function based multifractal analysis. IEEE Trans. on Antennas and Propagation, 2006, 54 (1): 136- 143.
doi: 10.1109/TAP.2005.861541 |
65 | LIU N B, HUANG Y, GUAN J, et al Fractal analysis of real sea clutter in frequency domain. Journal of Electronics & Information Technology, 2012, 34 (4): 929- 935. |
66 | GAO J B, YAO K. Multifractal features of sea clutter. Proc. of the IEEE Radar Conference, 2002: 500–505. |
67 |
HAYKIN S, LI X B Detection of signals in chaos. Proceedings of the IEEE, 1995, 83 (1): 95- 122.
doi: 10.1109/5.362751 |
68 | LIU N B, WANG G Q, BAO Z H, et al Multifractal property of sea clutter FRFT spectrum for target detection. Journal of Signal Processing, 2013, 29 (1): 1- 9. |
69 | GU Z M, ZHANG X G, WANG Q Multifractal property and target detection of sea clutter in FRFT domain. Journal of Nanjing University (Natural Science), 2017, 53 (4): 731- 737. |
70 | TIAN Y F, JI G R, YIN Z Y, et al Weak targets detection in sea clutter based on modified fractal character differences. Periodical of Ocean University of China, 2013, 43 (3): 92- 97. |
71 | LIU N B, GUAN J, WANG G Q, et al Target detection within sea clutter based on multi-scale Hurst exponent in FRFT domain. Acta Electronica Sinica, 2013, 41 (9): 1847- 1853. |
72 | CHEN X L, LIU N B, WANG G Q, et al Gaussian short-time fractional Fourier transform based detection algorithm of target with micro-motion at sea. Acta Electronica Sinica, 2014, 42 (5): 971- 977. |
73 | CHEN X L, GUAN J, YU X H, et al Radar micro-Doppler signature extraction and detection via short-time sparse time-frequency distribution. Journal of Electronics & Information Technology, 2017, 39 (5): 1017- 1023. |
74 |
SHI S N, SHUI P L Sea-surface floating small target detection by one-class classifier in time-frequency feature space. IEEE Trans. on Geoscience and Remote Sensing, 2018, 56 (11): 6395- 6411.
doi: 10.1109/TGRS.2018.2838260 |
75 |
BAI X, XU S W, ZHU J N, et al Floating small target detection in sea clutter based on multi-feature angle variance. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16, 9422- 9436.
doi: 10.1109/JSTARS.2023.3321998 |
76 | SU N Y, CHEN X L, GUAN J, et al Detection and classification of maritime target with micro-motion based on CNNs. Journal of Radars, 2018, 7 (5): 565- 574. |
77 |
QU Q Z, LIU W J, WANG J X, et al Enhanced CNN-based small target detection in sea clutter with controllable false alarm. IEEE Sensors Journal, 2023, 23 (9): 10193- 10205.
doi: 10.1109/JSEN.2023.3259953 |
78 |
QU Q Z, WANG Y L, LIU W J, et al A false alarm controllable detection method based on CNN for sea-surface small targets. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1- 5.
doi: 10.1109/LGRS.2022.3190865 |
79 | SU N Y, CHEN X L, CHEN B X, et al Dual-channel convolutional neural networks feature fusion method for radar maritime target intelligent detection. Modern Radar, 2019, 41 (10): 47- 52. |
80 | YANG Y, FENG D J, WANG X S, et al Performance analysis of low-altitude radar seeker detecting sea surface target. Journal of Electronics & Information Technology, 2011, 33 (8): 1779- 1785. |
81 |
BARTON D K Low-angle radar tracking. Proceedings of the IEEE, 1974, 62 (6): 687- 704.
doi: 10.1109/PROC.1974.9509 |
82 | WHITE W D Low-angle radar tracking in the presence of multipath. IEEE Trans. on Aerospace and Electronic Systems, 1974, 10 (6): 835- 852. |
83 | YANG Y. Study on the theories and methods of low altitude target detection for radar seeker. Changsha: National University of Defense Technology, 2014. (in Chinese) |
84 |
YU K B Recursive super-resolution algorithm for low-elevation target angle tracking in multipath. IEE-Radar, Sonar & Navigation, 1994, 141 (4): 223- 229.
doi: 10.1049/ip-rsn:19941232 |
85 |
SHI J P, HU G P, LEI T DOA estimation algorithms for low-angle targets with MIMO radar. Electronics Letters, 2016, 52 (8): 652- 654.
doi: 10.1049/el.2015.3355 |
86 | SEN S, NEHORAI A Adaptive OFDM radar for target detection in multipath scenarios. IEEE Trans. on Signal Processing, 2010, 59 (1): 78- 90. |
87 | ZHAO J H, YANG J Y. Frequency diversity to low-angle detecting using a highly deterministic multipath signal model. Proc. of the CIE International Conference on Radar, 2006. DOI: 10.1109/ICR.2006.343202. |
88 |
GIULI D Polarization diversity in radars. Proceedings of the IEEE, 1986, 74 (2): 245- 269.
doi: 10.1109/PROC.1986.13457 |
89 |
VALENZUELA-VALDES J F, GARCIA-FERNANDEZ M A, MARTINEZ-GONZALEZ A M, et al The role of polarization diversity for MIMO systems under Rayleigh-fading environments. IEEE Antennas and Wireless Propagation Letters, 2006, 5, 534- 536.
doi: 10.1109/LAWP.2006.889552 |
90 | ZHANG M Q, PENG L, LIANG Y, et al. Radar polarization diversity technology for low-altitude targets. Proc. of the CIE International Conference on Radar, 2021: 2326–2330. |
91 | ZHANG Y, ZENG H, WEI Y M, et al. Marine radar antenna height design under multipath effect. Proc. of the IET International Radar Conference, 2013. DOI: 10.1049/cp.2013.0115. |
92 | YANG Y, XIAO S P, FENG D J, et al. Single-transmit three-receive antenna radar anti-multipath scattering detection method. China: ZL201610190745.8. 2018–01–09. (in Chinese) |
93 | YANG Y, XIAO S P, LI C, et al. A method for radar target detection under multipath conditions. China: ZL201810082853.2. 2020−05−05. (in Chinese) |
94 | XIA Y. Research on detection and tracking of low altitude target based on OFDM radar. Changsha: National University of Defense Technology, 2016. |
95 | YUAN H F, JIANG C S Performance of OFDM-MIMO radar for multipath suppression. Signal Processing, 2012, 28 (7): 1000- 1005. |
96 | LI J, LIU H M, MIAO J H Analysis of the dynamic range and the detection performance of weak target for orthogonal waveform MIMO radar. Signal Processing, 2010, 26 (4): 512- 516. |
97 | ZHOU H, HU G P, SHI J P, et al Low altitude target detection performance for OFDM-MIMO radar. Chinese Journal of Radio Science, 2016, 31 (5): 988- 995. |
98 |
WILSON S L, CARLSON B D Radar detection in multipath. IEE-Radar, Sonar & Navigation, 1999, 146 (1): 45- 54.
doi: 10.1049/ip-rsn:19990264 |
99 | YANG Y, WANG X S, ZHANG W M, et al Detection technology of low-flying target on the sea in multipath environment. Chinese Journal of Radio Science, 2011, 26 (3): 443- 449. |
100 |
CAO Y H, WANG S H, WANG Y, et al Target detection for low angle radar based on multi-frequency order-statistics. Journal of Systems Engineering and Electronics, 2015, 26 (2): 267- 273.
doi: 10.1109/JSEE.2015.00032 |
101 | LIU W M, TONG C M, PENG P, et al Research on grazing incidence scattering characteristics and Brewster effect from ocean surface. Journal of Microwaves, 2017, 33 (3): 37- 43. |
102 | TOUGH R J A, BAKER C J, PINK J M Radar performance in a maritime environment: single hit detection in the presence of multipath fading and non-Rayleigh sea clutter. IEE Proceedings F-Radar and Signal Processing, 1990, 137 (1): 33- 40. |
103 | YANG Y, FENG D J, WANG X S, et al. Effects of K distributed sea clutter and multipath on radar detection of low altitude sea surface targets. IET Radar, Sonar & Navigation, 2014, 8(7): 757–766. |
104 |
RABIDEAU D J Clutter and jammer multipath cancellation in airborne adaptive radar. IEEE Trans. on Aerospace and Electronic Systems, 2000, 36 (2): 565- 583.
doi: 10.1109/7.845243 |
105 | NGWAR M, WIGHT J. Phase-coded-linear-frequency-modulated waveform for low cost marine radar system. Proc. of the IEEE Radar Conference, 2010: 1144–1149. |
106 | CHAVANNE R, ABED-MERAIM K, MEDYNSKI D. Target detection improvement using blind channel equalization OTHR communication. Proc. of the Sensor Array and Multichannel Signal Processing Workshop, 2004: 657–661. |
107 | LI H D, LIAO G S, XU J W Robust adaptive clutter suppression approach for missile-borne radar with ΣΔ-beam. Systems Engineering and Electronics, 2019, 41 (2): 273- 279. |
108 | BIALLAWONS O, ENDER J H G. Multipath detection by using space-space adaptive processing (SSAP) with MIMO radar. Proc. of the International Conference on Radar, 2018. DOI: 10.1109/RADAR.2018.8557221. |
109 | KUMBUL U, HAYVACI H T. Knowledge-aided adaptive detection with multipath exploitation radar. Proc. of the Sensor Signal Processing for Defence, 2016. DOI: 10.1109/SSPD.2016.7590605. |
110 | GULEN YILMAZ S H, TAHA HAYVACI H. Multipath exploitation radar with adaptive detection in partially homogeneous environments. IET Radar, Sonar & Navigation, 2020, 14(10): 1475–1482. |
111 |
WU Z Y, PENG Y X, WANG W B Deep learning-based unmanned aerial vehicle detection in the low altitude clutter background. IET Signal Processing, 2022, 16 (5): 588- 600.
doi: 10.1049/sil2.12133 |
112 |
FERTIG L B, BADEN J M, GUERCI J R Knowledge-aided processing for multipath exploitation radar (MER). IEEE Aerospace and Electronic Systems Magazine, 2017, 32 (10): 24- 36.
doi: 10.1109/MAES.2017.160035 |
113 | MOURA J M F, JIN Y W Detection by time reversal: single antenna. IEEE Trans. on Signal Processing, 2006, 55 (1): 187- 201. |
114 | JIN Y W, MOURA J M F Time-reversal detection using antenna arrays. IEEE Trans. on Signal Processing, 2008, 57 (4): 1396- 1414. |
115 |
ZHANG Z M, CHEN B X, YANG M L Moving target detection based on time reversal in a multipath environment. IEEE Trans. on Aerospace and Electronic Systems, 2021, 57 (5): 3221- 3236.
doi: 10.1109/TAES.2021.3074131 |
116 |
SKOLNIK M, LINDE G, MEADS K Senrad: an advanced wideband air-surveillance radar. IEEE Trans. on Aerospace and Electronic Systems, 2001, 37 (4): 1163- 1175.
doi: 10.1109/7.976957 |
[1] | Wei YANG, Liang ZHANG, Liru YANG, Wenpeng ZHANG, Qingmu SHEN. A general evaluation system for optimal selection performance of radar clutter model [J]. Journal of Systems Engineering and Electronics, 2023, 34(6): 1520-1525. |
[2] | Luyang BAI, Jun WANG, Xiaoling CHEN. Ambiguity function analysis and side peaks suppression of Link16 signal based passive radar [J]. Journal of Systems Engineering and Electronics, 2023, 34(6): 1526-1536. |
[3] | Qiang GUO, Long TENG, Xinliang WU, Liangang QI, Wenming SONG. Deinterleaving of radar pulse based on implicit feature [J]. Journal of Systems Engineering and Electronics, 2023, 34(6): 1537-1549. |
[4] | Zhiwen XIAO, Xiaowei FU. A cooperative detection game: UAV swarm vs. one fast intruder [J]. Journal of Systems Engineering and Electronics, 2023, 34(6): 1565-1575. |
[5] | Hongcheng ZENG, Jiadong DENG, Pengbo WANG, Xinkai ZHOU, Wei YANG, Jie CHEN. A spawning particle filter for defocused moving target detection in GNSS-based passive radar [J]. Journal of Systems Engineering and Electronics, 2023, 34(5): 1085-1100. |
[6] | Haipeng LI, Dazheng FENG. Cuckoo search algorithm-based optimal deployment method of heterogeneous multistatic radar for barrier coverage [J]. Journal of Systems Engineering and Electronics, 2023, 34(5): 1101-1115. |
[7] | Xiaolong CHEN, Jian GUAN, Jibin ZHENG, Yue ZHANG, Xiaohan YU. Radar fast long-time coherent integration via TR-SKT and robust sparse FRFT [J]. Journal of Systems Engineering and Electronics, 2023, 34(5): 1116-1129. |
[8] | Yan DAI, Dan LIU, Chuanming LI, Shaopeng WEI, Qingrong HU. Robust dual-channel correlation algorithm for complex weak target detection with wideband radar [J]. Journal of Systems Engineering and Electronics, 2023, 34(5): 1130-1146. |
[9] | Chaopeng YU, Wei XIONG, Xiaoqing LI, Lei DONG. Deep convolutional neural network for meteorology target detection in airborne weather radar images [J]. Journal of Systems Engineering and Electronics, 2023, 34(5): 1147-1157. |
[10] | Tianyi CAI, Bo DAN, Weibo HUANG. Super-resolution parameter estimation of monopulse radar by wide-narrowband joint processing [J]. Journal of Systems Engineering and Electronics, 2023, 34(5): 1158-1170. |
[11] | Zhaoyu LIU, Wenli ZHANG, Jingyue ZHENG, Shisheng GUO, Guolong CUI, Lingjiang KONG, Kun LIANG. Non-LOS target localization via millimeter-wave automotive radar [J]. Journal of Systems Engineering and Electronics, 2023, 34(5): 1171-1181. |
[12] | Yufeng CUI, Yongliang WANG, Weijian LIU, Qinglei DU, Xichuan ZHANG, Xuhui LI. A tunable adaptive detector for distributed targets when signal mismatch occurs [J]. Journal of Systems Engineering and Electronics, 2023, 34(4): 873-878. |
[13] | Libing JIANG, Shuyu ZHENG, Qingwei YANG, Peng YANG, Zhuang WANG. A modified OMP method for multi-orbit three dimensional ISAR imaging of the space target [J]. Journal of Systems Engineering and Electronics, 2023, 34(4): 879-893. |
[14] | Siyu CHEN, Yong WANG, Rui CAO. A high frequency vibration compensation approach for ultrahigh resolution SAR imaging based on sinusoidal frequency modulation Fourier-Bessel transform [J]. Journal of Systems Engineering and Electronics, 2023, 34(4): 894-905. |
[15] | Yongbin YU, Haowen TANG, Xiao FENG, Xiangxiang WANG, Hang HUANG. Design of multilayer cellular neural network based on memristor crossbar and its application to edge detection [J]. Journal of Systems Engineering and Electronics, 2023, 34(3): 641-649. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||