Journal of Systems Engineering and Electronics ›› 2023, Vol. 34 ›› Issue (4): 894-905.doi: 10.23919/JSEE.2023.000059
• DEFENCE ELECTRONICS TECHNOLOGY • Previous Articles
Siyu CHEN(), Yong WANG(), Rui CAO()
Received:
2022-01-04
Online:
2023-08-18
Published:
2023-08-28
Contact:
Yong WANG
E-mail:21b905043@stu.hit.edu.cn;wangyong6012@hit.edu.cn;caor@hit.edu.cn
About author:
Supported by:
Siyu CHEN, Yong WANG, Rui CAO. A high frequency vibration compensation approach for ultrahigh resolution SAR imaging based on sinusoidal frequency modulation Fourier-Bessel transform[J]. Journal of Systems Engineering and Electronics, 2023, 34(4): 894-905.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Simulation system parameters"
Parameter | Value | Parameter | Value | |
Carrier frequency/GHz | 37.5 | Wavelength/m | 0.008 | |
Doppler bandwidth/Hz | 5 000 | Bandwidth/GHz | 5 | |
Range resolution/m | 0.03 | Pulse repetition frequency/Hz | 6250 | |
Azimuth resolution/m | 0.04 | Pulse width/μs | 10 | |
Depression angle/(°) | 45 | Sampling rate/GHz | 6 | |
Synthetic aperture time/s | 2.1213 | Platform height/m | 3 000 | |
Vibration amplitude/mm | 3.9598 | Aircraft speed/(m·s−1) | 200 | |
Vibration frequency/Hz | 20 | SNR/dB | 10 | |
Vibration initial phase/rad | 0 | − | − |
Table 2
Parameter estimation results of the platform vibration via the DSFMT algorithm in [11] and the proposed SFMFBT algorithm "
Result | Algorithm | ||
DSFMT | SFMFBT | ||
Amplitude | Estimated value/mm | 3.8487 | 3.9402 |
Relative error/% | 2.8057 | 0.4950 | |
Frequency | Estimated value/Hz | 20.1802 | 19.9944 |
Relative error/% | 0.9010 | 0.0280 | |
Initial phase | Estimated value/rad | −0.0263 | −0.0192 |
Absolute error/rad | 0.0263 | 0.0192 |
Table 7
Parameter estimation results of the platform vibration via the DSFMT algorithm in [11] and the proposed SFMFBT algorithm "
Value | Algorithm | ||
DSFMT | SFMFBT | ||
Amplitude | Estimated values/mm | 4.0684 | 3.9752 |
Relative error/% | 2.7426 | 0.3889 | |
Frequency | Estimated values/Hz | 19.7600 | 19.9944 |
Relative error/% | 1.2000 | 0.0280 | |
Initial phase | Estimated values/rad | −0.1745 | 0.0410 |
Absolute error/rad | 0.1745 | 0.0410 |
1 |
XIONG X Y, LI G, MA Y H, et al New slant range model and azimuth perturbation resampling based high-squint maneuvering platform SAR imaging. Journal of Systems Engineering and Electronics, 2021, 32 (3): 545- 558.
doi: 10.23919/JSEE.2021.000046 |
2 |
FANG J, HU S H, MA X L SAR image de-noising via grouping-based PCA and guided filter. Journal of Systems Engineering and Electronics, 2021, 32 (1): 81- 91.
doi: 10.23919/JSEE.2021.000009 |
3 |
FANG F, HE R R, XU W, et al Study on precise satellite attitude maneuvering strategy for ultrahigh resolution spaceborne SAR imaging. IEEE Access, 2021, 9, 127226- 127239.
doi: 10.1109/ACCESS.2021.3111193 |
4 | JIN Y H, CHEN J L, XIA X G, et al Ultrahigh-resolution autofocusing for squint airborne SAR based on cascaded MD-PGA. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 4017305. |
5 | LIN H, CHEN J L, XING M D, et al Time-domain autofocus for ultrahigh resolution SAR based on azimuth scaling transformation. IEEE Trans. on Geoscience and Remote Sensing, 2022, 60, 527812. |
6 |
SHI H Y, ZHOU Q X, YANG X Y, et al SAR imaging method for sea scene target based on improved phase retrieval algorithm. Journal of Systems Engineering and Electronics, 2016, 27 (6): 1176- 1182.
doi: 10.21629/JSEE.2016.06.06 |
7 | HUANG Z W, HE Z H, SUN Z Y, et al Analysis and compensation of vibration error of high frequency synthetic aperture radar. Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2016, 1138- 1141. |
8 | SUN W, SUN J P, ZHANG Y, et al Terahertz ViSAR vibration compensation imaging algorithm for large strabismus helicopter. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42 (12): 2755- 2761. |
9 | WANG H, ZHANG Y, WANG B B, et al A novel helicopter-borne terahertz SAR imaging algorithm based on Keystone transform. Proc. of the 12th International Conference on Signal Processing, 2014, 1958- 1962. |
10 | XIA H T, CHEN Q, LI Y W, et al A high frequency vibration compensation approach in terahertz SAR based on wavelet multi-resolution analysis. Proc. of the China International SAR Symposium, 2018, 10796- 10803. |
11 |
WANG Y, WANG Z F, ZHAO B, et al Enhancement of azimuth focus performance in high-resolution SAR imaging based on the compensation for sensors platform vibration. IEEE Sensors Journal, 2016, 16 (16): 6333- 6345.
doi: 10.1109/JSEN.2016.2584622 |
12 |
LI Y W, WU Q, WU J W, et al Estimation of high-frequency vibration parameters for terahertz SAR imaging based on FrFT with combination of QML and RANSAC. IEEE Access, 2021, 9, 5485- 5496.
doi: 10.1109/ACCESS.2020.3047856 |
13 |
LI Y W, DING L, ZHENG Q B, et a A novel high-frequency vibration error estimation and compensation algorithm for THz-SAR imaging based on local FrFT. Sensors, 2020, 20 (9): 2669.
doi: 10.3390/s20092669 |
14 |
SHI S Y, LI C, HU J M, et al A high frequency vibration compensation approach for terahertz SAR based on sinusoidal frequency modulation fourier transform. IEEE Sensors Journal, 2021, 21 (9): 10796- 10803.
doi: 10.1109/JSEN.2021.3056519 |
15 |
SHI S Y, LI C, HU J M, et al Motion compensation for terahertz synthetic aperture radar based on subaperture decomposition and minimum entropy theorem. IEEE Sensors Journal, 2020, 20 (24): 14940- 14949.
doi: 10.1109/JSEN.2020.3010086 |
16 | DENG B, LI X, WANG H Q, et al. Theories & methods for SAR micro-motion target detection and imaging. Beijing: Science Press, 2014. |
17 |
ZHANG Y, SUN J P, LEI P, et al SAR-based paired echo focusing and suppression of vibrating targets. IEEE Trans. on Geoscience and Remote Sensing, 2014, 52 (12): 7593- 7605.
doi: 10.1109/TGRS.2014.2314681 |
18 | XIA W J, HUANG L L. Target vibration estimation in SAR based on phase-analysis method. Eurasip Journal on Advances in Signal Processing, 2016, 2016: 94. |
19 | PENG B, WEI X Z, DENG B, et al. A sinusoidal frequency modulation fourier transform for radar-based vehicle vibration estimation. IEEE Trans. on Instrumentation and Measurement, 2014, 63(9): 2188−2199. |
20 |
YANG Q, DENG B, WANG H Q, et al Parameter estimation and image reconstruction of rotating targets with vibrating interference in the terahertz band. Journal of Infrared Millimeter and Terahertz Waves, 2017, 38 (7): 909- 928.
doi: 10.1007/s10762-017-0390-1 |
21 |
WANG Q, PEPIN M, WRIGHT A, et al Reduction of vibration-induced artifacts in synthetic aperture radar imagery. IEEE Trans. on Geoscience and Remote Sensing, 2014, 52 (6): 3063- 3073.
doi: 10.1109/TGRS.2013.2269138 |
22 |
WANG Q, PEPIN M, BEACH R, et al SAR-based vibration estimation using the discrete fractional fourier transform. IEEE Trans. on Geoscience and Remote Sensing, 2012, 50 (10): 4145- 4156.
doi: 10.1109/TGRS.2012.2187665 |
23 | LIANG Y, LI G F, ZHANG G, et al. A nonparametric paired echo suppression method for helicopter-borne SAR imaging. IEEE Geoscience and Remote Sensing Letters, 2020, 17, (12): 2080−2084. |
24 | LIU Q X, HE F. Adaptive image formation algorithm for THz-SAR based on automatic motion compensation. Proc. of the IEEE Asia-Pacific Conference on Antennas and Propagation, 2018: 179−180. |
25 | LATHI B P. Signal processing & linear systems. Cary: Oxford University Press, 1998. |
26 | ZHAO Y L, ZHANG Q Y, C, LI C, et al Vibration error analysis and motion compensation of video synthetic aperture radar. Journal of Radars, 2015, 4 (2): 230- 239. |
27 | ZHANG X C, ZHANG Y X, SUN J P. Effects analysis of helicopter platform vibration on terahertz SAR imaging. Journal of Terahertz Science and Electronic Information Technology, 2018, 16(2): 205−211. |
28 | HE Q F, ZHANG Q, LUO Y et al. A sinusoidal frequency modulation Fourier-Bessel transform and its application to micro-Doppler feature extraction. Journal of Radars, 2018, 7(5): 593−601. (in Chinese) |
29 | WANG Z F, WANG Y, XU L. Parameter estimation of hybrid linear frequency modulation-sinusoidal frequency modulation Signal. IEEE Signal Processing Letters, 2017, 24(8): 1238−1241. |
30 | CAO R, WANG Y, ZHAO B, et al. Ship target imaging in airborne SAR system based on automatic image segmentation and ISAR technique. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 1985−2000. |
[1] | Xiuli KOU, Guanyong WANG, Jun LI, Jie CHEN. Coherent change detection of fine traces based on multi-angle SAR observations [J]. Journal of Systems Engineering and Electronics, 2023, 34(1): 1-8. |
[2] | Man ZHANG, Guanyong WANG, Feiming WEI, Xue JIN. Coherent range-dependent map-drift algorithm for improving SAR motion compensation [J]. Journal of Systems Engineering and Electronics, 2023, 34(1): 47-55. |
[3] | He TIAN, Chunzhu DONG, Hongcheng YIN, Li YUAN. Airborne sparse flight array SAR 3D imaging based on compressed sensing in frequency domain [J]. Journal of Systems Engineering and Electronics, 2023, 34(1): 56-67. |
[4] | Hao FENG, Jianzhong WU, Lu ZHANG, Mingsheng LIAO. Unsupervised change detection of man-made objects using coherent and incoherent features of multi-temporal SAR images [J]. Journal of Systems Engineering and Electronics, 2022, 33(4): 896-906. |
[5] | Kai ZHOU, Daojing LI, Anjing CUI, Dong HAN, He TIAN, Haifeng YU, Jianbo DU, Lei LIU, Yu ZHU, Running ZHANG. Sparse flight spotlight mode 3-D imaging of spaceborne SAR based on sparse spectrum and principal component analysis [J]. Journal of Systems Engineering and Electronics, 2021, 32(5): 1143-1151. |
[6] | Xuying XIONG, Gen LI, Yanheng MA, Lina CHU. New slant range model and azimuth perturbation resampling based high-squint maneuvering platform SAR imaging [J]. Journal of Systems Engineering and Electronics, 2021, 32(3): 545-558. |
[7] | Jing FANG, Shaohai HU, Xiaole MA. SAR image de-noising via grouping-based PCA and guided filter [J]. Journal of Systems Engineering and Electronics, 2021, 32(1): 81-91. |
[8] | Wensheng CHANG, Haihong TAO, Yanbin LIU, Guangcai SUN. Design of synthetic aperture radar low-intercept radio frequency stealth [J]. Journal of Systems Engineering and Electronics, 2020, 31(1): 64-72. |
[9] | Chun LIU, Chunhua XIE, Jian YANG, Yingying XIAO, Junliang BAO. A method for coastal oil tank detection in polarimetric SAR images based on recognition of T-shaped harbor [J]. Journal of Systems Engineering and Electronics, 2018, 29(3): 499-509. |
[10] | Rui Zhang and Min Zhang. SAR target recognition based on active contour without edges [J]. Systems Engineering and Electronics, 2017, 28(2): 276-281. |
[11] | Xianghui Yuan and Tao Liu. Texture invariant estimation of equivalent number of looks based on log-cumulants in polarimetric radar imagery [J]. Systems Engineering and Electronics, 2017, 28(1): 58-. |
[12] | Hongyin Shi, Qiuxiao Zhou, Xiaoyan Yang, and Qiusheng Lian. SAR imaging method for sea scene target based on improved phase retrieval algorithm [J]. Journal of Systems Engineering and Electronics, 2016, 27(6): 1176-1182. |
[13] | Sheng Zhang, Guangcai Sun, and Mengdao Xing. Full aperture imaging algorithm for highly squinted TOPS SAR [J]. Journal of Systems Engineering and Electronics, 2016, 27(6): 1168-1175. |
[14] | Lin Yang, Mengdao Xing, and Guangcai Sun. Ionosphere correction algorithm for spaceborne SAR imaging [J]. Journal of Systems Engineering and Electronics, 2016, 27(5): 993-1000. |
[15] | Lin Zhang and Yicheng Jiang. Imaging algorithm of multi-ship motion target based on compressed sensing [J]. Systems Engineering and Electronics, 2016, 27(4): 790-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||