With the rapid development of low-orbit satellite communication networks both domestically and internationally, space-terrestrial integrated networks will become the future development trend. For space and terrestrial networks with limited resources, the utilization efficiency of the entire space-terrestrial integrated networks resources can be affected by the core network indirectly. In order to improve the response efficiency of core networks expansion construction, early warning of the core network elements capacity is necessary. Based on the integrated architecture of space and terrestrial network, multidimensional factors are considered in this paper, including the number of terminals, login users, and the rules of users’ migration during holidays. Using artifical intelligence (AI) technologies, the registered users of the access and mobility management function (AMF), authorization users of the unified data management (UDM), protocol data unit (PDU) sessions of session management function (SMF) are predicted in combination with the number of login users, the number of terminals. Therefore, the core network elements capacity can be predicted in advance. The proposed method is proven to be effective based on the data from real network.
A dynamic multi-beam resource allocation algorithm for large low Earth orbit (LEO) constellation based on on-board distributed computing is proposed in this paper. The allocation is a combinatorial optimization process under a series of complex constraints, which is important for enhancing the matching between resources and requirements. A complex algorithm is not available because that the LEO on-board resources is limited. The proposed genetic algorithm (GA) based on two-dimensional individual model and uncorrelated single paternal inheritance method is designed to support distributed computation to enhance the feasibility of on-board application. A distributed system composed of eight embedded devices is built to verify the algorithm. A typical scenario is built in the system to evaluate the resource allocation process, algorithm mathematical model, trigger strategy, and distributed computation architecture. According to the simulation and measurement results, the proposed algorithm can provide an allocation result for more than 1500 tasks in 14 s and the success rate is more than 91% in a typical scene. The response time is decreased by 40% compared with the conditional GA.
A low-Earth-orbit (LEO) satellite network can provide full-coverage access services worldwide and is an essential candidate for future 6G networking. However, the large variability of the geographic distribution of the Earth’s population leads to an uneven service volume distribution of access service. Moreover, the limitations on the resources of satellites are far from being able to serve the traffic in hotspot areas. To enhance the forwarding capability of satellite networks, we first assess how hotspot areas under different load cases and spatial scales significantly affect the network throughput of an LEO satellite network overall. Then, we propose a multi-region cooperative traffic scheduling algorithm. The algorithm migrates low-grade traffic from hotspot areas to coldspot areas for forwarding, significantly increasing the overall throughput of the satellite network while sacrificing some latency of end-to-end forwarding. This algorithm can utilize all the global satellite resources and improve the utilization of network resources. We model the cooperative multi-region scheduling of large-scale LEO satellites. Based on the model, we build a system testbed using OMNET++ to compare the proposed method with existing techniques. The simulations show that our proposed method can reduce the packet loss probability by 30% and improve the resource utilization ratio by 3.69%.
Beam-hopping technology has become one of the major research hotspots for satellite communication in order to enhance their communication capacity and flexibility. However, beam hopping causes the traditional continuous time-division multiplexing signal in the forward downlink to become a burst signal, satellite terminal receivers need to solve multiple key issues such as burst signal rapid synchronization and high-performance reception. Firstly, this paper analyzes the key issues of burst communication for traffic signals in beam hopping systems, and then compares and studies typical carrier synchronization algorithms for burst signals. Secondly, combining the requirements of beam-hopping communication systems for efficient burst and low signal-to-noise ratio reception of downlink signals in forward links, a decoding assisted bidirectional variable parameter iterative carrier synchronization technique is proposed, which introduces the idea of iterative processing into carrier synchronization. Aiming at the technical characteristics of communication signal carrier synchronization, a new technical approach of bidirectional variable parameter iteration is adopted, breaking through the traditional understanding that loop structures cannot adapt to low signal-to-noise ratio burst demodulation. Finally, combining the DVB-S2X standard physical layer frame format used in high throughput satellite communication systems, the research and performance simulation are conducted. The results show that the new technology proposed in this paper can significantly shorten the carrier synchronization time of burst signals, achieve fast synchronization of low signal-to-noise ratio burst signals, and have the unique advantage of flexible and adjustable parameters.
By deploying the ubiquitous and reliable coverage of low Earth orbit (LEO) satellite networks using optical inter satellite link (OISL), computation offloading services can be provided for any users without proximal servers, while the resource limitation of both computation and storage on satellites is the important factor affecting the maximum task completion time. In this paper, we study a delay-optimal multi-satellite collaborative computation offloading scheme that allows satellites to actively migrate tasks among themselves by employing the high-speed OISLs, such that tasks with long queuing delay will be served as quickly as possible by utilizing idle computation resources in the neighborhood. To satisfy the delay requirement of delay-sensitive task, we first propose a deadline-aware task scheduling scheme in which a priority model is constructed to sort the order of tasks being served based on its deadline, and then a delay-optimal collaborative offloading scheme is derived such that the tasks which cannot be completed locally can be migrated to other idle satellites. Simulation results demonstrate the effectiveness of our multi-satellite collaborative computation offloading strategy in reducing task complement time and improving resource utilization of the LEO satellite network.