1 
JUNGNICKEL D, POTT A. Perfect and almost perfect sequences. IEEE Trans. on Information Theory, 2001, 47(6): 26072608.

2 
TANG X H, GONG G. New constructions of binary sequences with optimal autocorrelation value/magnitude. IEEE Trans. on Information Theory, 2010, 56(3): 12781286.

3 
BOZTAS S, PARAMPALLI U. Nonbinary sequences with perfect and nearly perfect autocorrelations. Proc. of the IEEE International Symposium on Information Theory Proceedings, 2010: 13001304.

4 
CHEN G, ZHAO Z Y. Almost perfect sequences based on cyclic difference sets. Journal of Systems Engineering and Electronics, 2007, 18 (1): 155 159.
doi: 10.1016/S10044132(07)60067X

5 
WOLFMANN J. Almost perfect autocorrelation sequences. IEEE Trans. on Information Theory, 1992, 38(4): 12141418.

6 
POTT A, BRADLEY S P. Existence and nonexistence of almostperfect autocorrelation sequences. IEEE Trans. on Information Theory, 1995, 41(1): 301304.

7 
WANG Y Z, XU C Q. Divisible difference set pair and approach for the study of almost perfect binary sequence pair. Acta Electronica Sinica, 2009, 37 (4): 692 695.

8 
ZHAO X Q, HE W C, WANG Z W, et al. The theory of the perfect binary array pairs. Acta Electronica Sinica, 1999, 27 (1): 34 37.

9 
JIN S Y, SONG H Y. Note on a pair of binary sequences with ideal twolevel crosscorrelation. Proc. of the IEEE International Symposium on Information Theory, 2008: 26032607.

10 
JIN S Y, SONG H Y. Binary sequence pairs with twolevel correlation and cyclic difference pairs. IEICE Trans. on Fundamentals of Electronics, Communications and Computer Science, 2010, E93A(11): 22662271.

11 
PENG X P, XU C Q, ARASU K T. New families of binary sequence pairs with twolevel and threelevel correlation. IEEE Trans. on Information Theory, 2012, 58(11): 69686978.

12 
PENG X P, XU C Q, LI G, et al. The constructions of almost binary sequence pairs and binary sequence pairs with threelevel autocorrelation. IEICE Trans. on Fundamentals of Electronics, Communications and Computer Science, 2011, E94A(9): 18861891.

13 
SHEN X M, JIA Y G, SONG X F. Constructions of binary sequence pairs of period 3p with optimal threelevel correlation. IEEE Communications Letters, 2017, 21 (10): 2150 2153.
doi: 10.1109/LCOMM.2017.2700845

14 
PENG X P, REN J D, XU C Q, et al. New families of binary sequence pairs with threelevel correlation and odd composite length. IEICE Trans. on Fundamentals of Electronics, Communications and Computer Science, 2016, E99A(4): 874879.

15 
LIU X H, WANG J H, WU D H. Two new classes of binary sequence pairs with threelevel crosscorrelation. Advance in Mathematics of Communications, 2015, 9 (1): 117 128.
doi: 10.3934/amc.2015.9.117

16 
TANG X H, GONG G. New constructions of binary sequences with optimal autocorrelation value/magnitude. IEEE Trans. on Information Theory, 2010, 6(3): 12781286.

17 
DING C S, PEI D, SALOMAA A. Chinese remainder theorem: applications in computing, coding, cryptography. Signapore: World Scientific, 1996.
