1 |
JUNGNICKEL D, POTT A. Perfect and almost perfect sequences. IEEE Trans. on Information Theory, 2001, 47(6): 2607-2608.
|
2 |
TANG X H, GONG G. New constructions of binary sequences with optimal autocorrelation value/magnitude. IEEE Trans. on Information Theory, 2010, 56(3): 1278-1286.
|
3 |
BOZTAS S, PARAMPALLI U. Nonbinary sequences with perfect and nearly perfect autocorrelations. Proc. of the IEEE International Symposium on Information Theory Proceedings, 2010: 1300-1304.
|
4 |
CHEN G, ZHAO Z Y. Almost perfect sequences based on cyclic difference sets. Journal of Systems Engineering and Electronics, 2007, 18 (1): 155- 159.
doi: 10.1016/S1004-4132(07)60067-X
|
5 |
WOLFMANN J. Almost perfect autocorrelation sequences. IEEE Trans. on Information Theory, 1992, 38(4): 1214-1418.
|
6 |
POTT A, BRADLEY S P. Existence and nonexistence of almost-perfect autocorrelation sequences. IEEE Trans. on Information Theory, 1995, 41(1): 301-304.
|
7 |
WANG Y Z, XU C Q. Divisible difference set pair and approach for the study of almost perfect binary sequence pair. Acta Electronica Sinica, 2009, 37 (4): 692- 695.
|
8 |
ZHAO X Q, HE W C, WANG Z W, et al. The theory of the perfect binary array pairs. Acta Electronica Sinica, 1999, 27 (1): 34- 37.
|
9 |
JIN S Y, SONG H Y. Note on a pair of binary sequences with ideal two-level crosscorrelation. Proc. of the IEEE International Symposium on Information Theory, 2008: 2603-2607.
|
10 |
JIN S Y, SONG H Y. Binary sequence pairs with two-level correlation and cyclic difference pairs. IEICE Trans. on Fundamentals of Electronics, Communications and Computer Science, 2010, E93-A(11): 2266-2271.
|
11 |
PENG X P, XU C Q, ARASU K T. New families of binary sequence pairs with two-level and three-level correlation. IEEE Trans. on Information Theory, 2012, 58(11): 6968-6978.
|
12 |
PENG X P, XU C Q, LI G, et al. The constructions of almost binary sequence pairs and binary sequence pairs with threelevel autocorrelation. IEICE Trans. on Fundamentals of Electronics, Communications and Computer Science, 2011, E94-A(9): 1886-1891.
|
13 |
SHEN X M, JIA Y G, SONG X F. Constructions of binary sequence pairs of period 3p with optimal three-level correlation. IEEE Communications Letters, 2017, 21 (10): 2150- 2153.
doi: 10.1109/LCOMM.2017.2700845
|
14 |
PENG X P, REN J D, XU C Q, et al. New families of binary sequence pairs with three-level correlation and odd composite length. IEICE Trans. on Fundamentals of Electronics, Communications and Computer Science, 2016, E99-A(4): 874-879.
|
15 |
LIU X H, WANG J H, WU D H. Two new classes of binary sequence pairs with three-level cross-correlation. Advance in Mathematics of Communications, 2015, 9 (1): 117- 128.
doi: 10.3934/amc.2015.9.117
|
16 |
TANG X H, GONG G. New constructions of binary sequences with optimal autocorrelation value/magnitude. IEEE Trans. on Information Theory, 2010, 6(3): 1278-1286.
|
17 |
DING C S, PEI D, SALOMAA A. Chinese remainder theorem: applications in computing, coding, cryptography. Signapore: World Scientific, 1996.
|