Journal of Systems Engineering and Electronics ›› 2023, Vol. 34 ›› Issue (2): 360-373.doi: 10.23919/JSEE.2023.000056
• SYSTEMS ENGINEERING • Previous Articles
Yaozhong ZHANG(), Yike LI(), Zhuoran WU, Jialin XU
Received:
2021-01-08
Online:
2023-04-18
Published:
2023-04-18
Contact:
Yaozhong ZHANG
E-mail:zhang_y_z@nwpu.edu.cn;liyike@mail.nwpu.edu.cn
About author:
Supported by:
Yaozhong ZHANG, Yike LI, Zhuoran WU, Jialin XU. Deep reinforcement learning for UAV swarm rendezvous behavior[J]. Journal of Systems Engineering and Electronics, 2023, 34(2): 360-373.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
12 | SOUZA LEITE C F. A deep reinforcement learning algorithm for swarm robotics. Warsaw, Poland: Institute of Aeronautics and Applied Mechanics, 2018. |
13 | HUTTENRAUCH M, SOSIC A, NEUMANN G. Guided deep reinforcement learning for swarm systems. https://doi.org/10.48550/arXiv.1709.06011. |
14 | KERSANDT K. Deep reinforcement learning as control method for autonomous UAVs. Barcelona: Polytechnic University of Catalonia, 2018. |
15 | XUE X D, LI Z, ZHANG D S, et al A deep reinforcement learning method for mobile robot collision avoidance based on double DQN. Proc. of the IEEE 28th International Symposium on Industrial Electronics, 2019, 2131- 2136. |
16 | AN W, PARK C, HAN X, et al Hidden Markov model and auction-based formulations of sensor coordination mechanisms in dynamic task environments. IEEE Trans. on Systems, Man & Cybernetics: Part A, 2011, 41 (6): 1092- 1106. |
17 | TSITSIKLIS J N Asynchronous stochastic approximation and Q-learning. Machine Learning, 1994, 16 (3): 185- 202. |
18 | VINCENT F, RAPHAEL F, DAMIEN E. Playing Atari with deep reinforcement learning. https://doi.org/10.48550/arXiv.1312.5602. |
19 |
HIKARU S, TADASHI H, SATORU K Experimental study on behavior acquisition of mobile robot by deep Q-network. Journal of Advanced Computational Intelligence and Intelligent Informatics, 2017, 21 (5): 840- 848.
doi: 10.20965/jaciii.2017.p0840 |
1 | SKJERVOLD E, HOELSRETER O T Autonomous, cooperative UAV operations using COTS consumer drones and custom ground control station. Proc. of the IEEE Military Communications Conference, 2019, 486- 492. |
2 | BARTON S L, WAYTOWICH N R, ZAROUKIAN E, et al Measuring collaborative emergent behavior in multi-agent reinforcement learning. Advances in Intelligent Systems and Computing, 2019, 876, 422- 427. |
3 | PHAM H, LA H, FEIL-SEIFER D, et al. Autonomous UAV navigation using reinforcement learning. https://doi.org/10.48550/arXiv.1801.05086. |
4 | PHAM H, FEIL-SEIFER D, FEIL-SEIFER D, et al. Cooperative and distributed reinforcement learning of drones for field coverage. https://doi.org/10.48550/arXiv.1803.07250. |
5 | PRICE J K, PINON-FISCHER O J, MAVRIS D N. Definition of optimal agent behaviors using reinforcement learning. Proc. of the AIAA SciTech Forum, 2019. DOI: 10.2514/6.2019-2200. |
6 | QI S Y, ZHU S C Intent-aware multi-agent reinforcement learning. Proc. of the IEEE International Conference on Robotics and Automation, 2018, 7533- 7540. |
7 | ZHANG W X, MA L, LI X N Multi-agent reinforcement learning based on local communication. Cluster Computing, 2019, 22 (6): 1- 10. |
8 | LIU Y X, HU L, TIAN Y L, et al Reinforcement learning based two-level control framework of UAV swarm for cooperative persistent surveillance in an unknown urban area. Aerospace Science and Technology, 2019, 98, 105671. |
9 | LUO D, YANG X U, ZHANG J New progresses on UAV swarm confrontation. Science & Technology Review, 2017, 35 (7): 26- 31. |
10 | OZSOYELLER D, TOKEKAR P Multi-robot symmetric rendezvous search on the line. IEEE Robotics and Automation Letters, 2021, 7 (1): 334- 341. |
11 | LI Q Y, DU X T, HUANG Y Z, et al. Learning of coordination policies for robotic swarms. https://doi.org/10.48550/arXiv.1709.06620. |
[1] | Jie LI, Xiaoyu DANG, Sai LI. DQN-based decentralized multi-agent JSAP resource allocation for UAV swarm communication [J]. Journal of Systems Engineering and Electronics, 2023, 34(2): 289-298. |
[2] | Hao LI, Hemin SUN, Ronghua ZHOU, Huainian ZHANG. Hybrid TDOA/FDOA and track optimization of UAV swarm based on A-optimality [J]. Journal of Systems Engineering and Electronics, 2023, 34(1): 149-159. |
[3] | Bohao LI, Yunjie WU, Guofei LI. Hierarchical reinforcement learning guidance with threat avoidance [J]. Journal of Systems Engineering and Electronics, 2022, 33(5): 1173-1185. |
[4] | Yangyang JIANG, Yan GAO, Wenqi SONG, Yue LI, Quan QUAN. Bibliometric analysis of UAV swarms [J]. Journal of Systems Engineering and Electronics, 2022, 33(2): 406-425. |
[5] | Jinqiang HU, Husheng WU, Renjun ZHAN, Rafik MENASSEL, Xuanwu ZHOU. Self-organized search-attack mission planning for UAV swarm based on wolf pack hunting behavior [J]. Journal of Systems Engineering and Electronics, 2021, 32(6): 1463-1476. |
[6] | Kaifang WAN, Bo LI, Xiaoguang GAO, Zijian HU, Zhipeng YANG. A learning-based flexible autonomous motion control method for UAV in dynamic unknown environments [J]. Journal of Systems Engineering and Electronics, 2021, 32(6): 1490-1508. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||