Journal of Systems Engineering and Electronics ›› 2025, Vol. 36 ›› Issue (3): 736-753.doi: 10.23919/JSEE.2025.000073
• SYSTEMS ENGINEERING • Previous Articles
Ning WANG1,2(), Xiaolong LIANG1,2,*(
), Zhe LI1,2(
), Yueqi HOU1,2(
), Aiwu YANG1,2(
)
Received:
2023-09-05
Online:
2025-06-18
Published:
2025-07-10
Contact:
Xiaolong LIANG
E-mail:wnlearning@163.com;lxllearning@163.com;kongyanshi@126.com;afeu_hyq@163.com;ai_five@163.com
About author:
Ning WANG, Xiaolong LIANG, Zhe LI, Yueqi HOU, Aiwu YANG. Joint planning method for cross-domain unmanned swarm target assignment and mission trajectory[J]. Journal of Systems Engineering and Electronics, 2025, 36(3): 736-753.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Target attribute values"
Target | Service demand | Position | Requirement complexity |
{0,0,1,0,0} | (24.11,26.67) | 1 | |
{0,1,0,0,0} | (13.29,23.03) | 1 | |
{1,0,1,0,0} | (21.05,9.91) | 2 | |
{0,1,0,1,0} | (37.13,4.41) | 2 | |
{1,1,0,0,1} | (11.45,22.48) | 3 | |
{1,1,0,1,0} | (44.91,7.86) | 3 | |
{1,1,1,1,0) | (28.48,5.23) | 4 | |
{1,1,1,0,1} | (30.56,23.95) | 4 | |
{1,2,1,1,0} | (11.35,24.21) | 5 | |
{1,1,2,1,0} | (31.63,2.05) | 5 | |
{2,2,1,0,1} | (32.65,10.17) | 6 | |
{1,2,2,1,0} | (46.19,9.45) | 6 | |
{0,0,0,0,1} | (52.52,14.72) | 1 | |
{1,0,1,0,0} | (44.53,8.82) | 2 | |
{0,1,0,1,1} | (55.76,33.87) | 3 | |
{0,0,1,0,0} | (55.95,15.44) | 1 | |
{0,0.0,0,0} | (57.1,37.21) | 0 | |
{0,0.1,0.1} | (26.96.28.77) | 2 | |
{1,1,0,0,0} | (30.23,14.84) | 2 | |
{1,1,0,0,1} | (48.14,7.05) | 3 | |
{0,0,1,0,0} | (5.27,15.65) | 1 | |
{0,0,1,1,1} | (26.96,4.47) | 3 | |
{0,0,0,1,1} | (39.92,39.66) | 2 | |
{0,0,1,0,0) | (33.37,26.74) | 1 | |
{0,1,0,1,1} | (13.06,29.17) | 3 | |
{1,0,1,0,0) | (44.84,17.94) | 2 | |
{0,1,0,0,0} | (55.46,14.15) | 1 | |
{0,0,1,0,1} | (12.25,36.42) | 2 | |
{0,1,0,1,0} | (38.9,36.55) | 2 | |
{1,1,1,1,1} | (21.36,18.44) | 5 | |
{1,0,1,11} | (27.96;38.55) | 4 | |
{0,0,1,0,1} | (50.35,25.4) | 2 | |
{1,1,1,0,0} | (45.82,0.57) | 3 | |
{1,1,0,1,1} | (1.74,4.17) | 4 | |
{1,0,0,0,0} | (19.05,13.14) | 1 | |
{1,1,0,0,1} | (37.28,13.16) | 3 | |
{0,0,0,1,1} | (0.28,33.45) | 2 | |
{0,0,1,1,1} | (17.76,13.52) | 3 | |
{0,1,0,1,0} | (4.99,20.29) | 2 | |
{0,1,0,0,1} | (52.74,37.08) | 2 |
Table 2
Value of the unmanned system attribute"
Platform | Service provision | Position | Platform category |
{0 0,0,2,2} | (38.89,4.34) | UUV | |
{2,0,0,0,0} | (37.3,27.26) | UAV | |
{1,1,2,1,2} | (54.46, 15.65) | USV | |
{2 0,0,0,0} | (39.35,28.31) | UAV | |
{1,1,2,1,2} | (50.53,5.21) | USV | |
{2 0,0,1,0} | (4.21,16.25) | UAV | |
{1,1,0,1,2} | (13.62,26.46) | USV | |
{2,0,0,0,0} | (50.13, 24.62) | UAV | |
{1,1,2,1,2} | (11.98, 15.3) | USV | |
{2,0,0,1,0} | (16.82, 24.09) | UAV | |
{0,0,0,0,2} | (36.61,3.02) | UUV | |
{0 0,0,0,2} | (24.24, 26.24) | UUV | |
{0,0,0,2,0} | (22.34,24.31) | UUV | |
{2,0,0,0,0} | (46.18,22.44) | UAV | |
{2,0,0,1,0} | (12.01,6.12) | UAV | |
{2,0,1,0,0} | (48.1,0.55) | UAV | |
{1,1,2,1,2} | (46.05,11.61) | USV | |
{2,0,0,1,0} | (49.5, 28.06) | UAV | |
{2 0,0,1,0} | (16.49,4.97) | UAV | |
{1,1,0,1,2} | (36.29,22.81) | USV | |
{2,0,1,0, 0} | (0.64,24.39) | UAV | |
{2 0,0,0,0} | (29.91,20.19) | UAV | |
{0,0,0,2,0} | (59.36, 5.38) | UUV | |
{2,0,1,0,0} | (50.92,24.0) | UAV | |
{2,0,1,0,0} | (13.14,19.1) | UAV |
Table 4
Algorithm parameters"
Parameter | Value | Parameter | Value | |
40 | 25 | |||
1 | 1 | |||
3 | ||||
500 | ||||
0.4 | 0.2 | |||
400 | ||||
0.4 | 0.6 | |||
0.1 | 200 | |||
0.5 | 500 |
Table 5
Calculation results of the sample target allocation"
Platform | Mission sequence | Track length/km | Time/s |
63.40 | |||
86.38 | |||
115.61 | |||
40.71 | |||
180.36 | |||
113.93 | |||
119.01 | |||
74.48 | |||
132.32 | |||
101.42 | |||
91.26 | |||
117.43 | |||
113.73 | |||
96.72 | |||
85.83 | |||
93.21 | |||
172.50 | |||
72.40 | |||
76.56 | |||
181.44 | |||
98.61 | |||
80.65 | |||
78.18 | |||
93.38 | |||
75.57 |
Table 6
Calculation results of the sample trajectory optimisation"
Platform | Mission sequence | Track length/km | Time/s |
63.40 | |||
86.38 | |||
111.05 | |||
40.71 | |||
133.52 | |||
113.93 | |||
110.06 | |||
62.09 | |||
130.52 | |||
101.42 | |||
91.26 | |||
117.43 | |||
110.25 | |||
84.46 | |||
85.83 | 2.86 | ||
89.35 | |||
151.65 | |||
72.40 | |||
75.91 | |||
124.83 | |||
97.86 | |||
78.29 | |||
78.18 | |||
93.38 | |||
75.57 |
1 |
ZHANG Y Z, LI Y K, XU J L Deep reinforcement learning for UAV swarm rendezvous behavior. Journal of Systems Engineering and Electronics, 2023, 34 (2): 360- 373.
doi: 10.23919/JSEE.2023.000056 |
2 | HUANG G, LI J H AC-DSDE evolutionary algorithm-based cooperative target assignment for multiple UAVs. Acta Automatica Sinica, 2021, 47 (1): 173- 184. |
3 |
LI J, DANG X Y, LI S DQN-based decentralized multi-agent JSAP resource allocation for UAV swarm communication. Journal of Systems Engineering and Electronics, 2023, 34 (2): 289- 298.
doi: 10.23919/JSEE.2023.000045 |
4 |
WANG Y, CAI M , JIAN X L Consensus model of social network group decision-making based on trust relationship among experts and expert reliability. Journal of Systems Engineering and Electronics, 2023, 34 (6): 1576- 1588.
doi: 10.23919/JSEE.2023.000021 |
5 |
ZHANG J D, GUO Y K, ZHENG L H, et al Real-time UAV path planning based on LSTM network. Journal of Systems Engineering and Electronics, 2024, 35 (2): 374- 385.
doi: 10.23919/JSEE.2023.000157 |
6 |
WU Y, LOW K H, LV C Cooperative path planning for heterogeneous unmanned vehicles in a search-and-track mission aiming at an underwater target. IEEE Trans. on Vehicular Technology, 2020, 69 (6): 6782- 6787.
doi: 10.1109/TVT.2020.2991983 |
7 |
YANG K W, LI J C, LIU M D, et al Complex systems and network science: a survey. Journal of Systems Engineering and Electronics, 2023, 34 (3): 543- 573.
doi: 10.23919/JSEE.2023.000080 |
8 |
WANG N, LIANG X L, LI Z, et al PSE-D model-based cooperative path planning for UAV&USV systems in anti-submarine search missions. IEEE Trans. on Aerospace and Electronic Systems, 2024, 60 (5): 6224- 6240.
doi: 10.1109/TAES.2024.3400923 |
9 |
LU F X, DAI Q Y, YANG G, et al Online task planning method of anti-ship missile based on rolling optimization. Journal of Systems Engineering and Electronics, 2024, 35 (3): 720- 731.
doi: 10.23919/JSEE.2024.000059 |
10 |
CHEN C, QUAN W, SHAO Z, et al Aerial target threat assessment based on gated recurrent unit and self-attention mechanism. Journal of Systems Engineering and Electronics, 2024, 35 (2): 361- 373.
doi: 10.23919/JSEE.2023.000116 |
11 |
ROBERGE V, TARBOUCHI M, LABONTE G Comparison of parallel genetic algorithm and particle swarm optimization for real-time UAV path planning. IEEE Trans. on Industrial Informatics, 2013, 9 (1): 132- 141.
doi: 10.1109/TII.2012.2198665 |
12 |
CHEN Z W, ZHOU Z M, ZHNAG L G, et al Mission reliability modeling and evaluation for reconfigurable unmanned weapon system-of-systems based on effective operation loop. Journal of Systems Engineering and Electronics, 2023, 34 (3): 588- 597.
doi: 10.23919/JSEE.2023.000082 |
13 |
WEI W, WANG J J, FANG Z R, et al 3U: joint design of UAV-USV-UUV networks for cooperative target hunting. IEEE Trans. on Vehicular Technology, 2023, 72 (3): 4085- 4090.
doi: 10.1109/TVT.2022.3220856 |
14 |
ZHANG Q Y, LI X Y, ZU T P, et al Belief reliability: a scientific exploration of reliability engineering. Journal of Systems Engineering and Electronics, 2024, 35 (3): 619- 643.
doi: 10.23919/JSEE.2024.000029 |
15 |
DUAN X B, FAN Q C, WI W H, et al Belief exponential divergence for D-S evidence theory and its application in multi-source information fusion. Journal of Systems Engineering and Electronics, 2024, 35 (6): 1454- 1468.
doi: 10.23919/JSEE.2024.000101 |
16 | WANG F, HUANG Z L, HAN M C, et al Collaborative multi-tasking of heterogeneous UAVs based on KnCMPSO Algorithm. Acta Automatica Sinica, 2023, 49 (2): 399- 414. |
17 |
CHEN Y B, YANG D, YU J Q Multi-UAV task assignment with parameter and time-sensitive uncertainties using modified two-part wolf pack search algorithm. IEEE Trans. on Aerospace and Electronic Systems, 2018, 54 (6): 2853- 2872.
doi: 10.1109/TAES.2018.2831138 |
18 | ZHANG R P, FENG Y X, YAN Y K Hybrid particle swarm algorithm for cooperative multi-UAV mission assignment. Acta Aeronautica et Astronautica Sinica, 2022, 43 (12): 418- 433. |
19 |
ZHANG J, CUI Y N, REN J Dynamic mission planning algorithm for UAV formation in battlefield environment. IEEE Trans. on Aerospace and Electronic Systems, 2023, 59 (4): 3750- 3765.
doi: 10.1109/TAES.2022.3231244 |
20 | CAO Y, LONG T, SUN J L, et al Multi-machine distributed timing task assignment driven by non-deadlocking contract network protocol. Journal of Astronautics, 2022, 43 (5): 675- 684. |
21 |
LIU J M, CHEN Y G, WANG R, et al Complex task planning method of space-aeronautics cooperative observation based on multi-layer interaction. Journal of Systems Engineering and Electronics, 2023, 34 (6): 1550- 1564.
doi: 10.23919/JSEE.2022.000098 |
22 | DAI J, XU F, CHEN Q F Multi-UAV cooperative search area delineation and path planning. Acta Aeronautica et Astronautica Sinica, 2020, 41 (S1): 149- 156. |
23 | ZHANG Z X, LONG T, XU G T Revisit mechanism driven cooperative multi-UAV dynamic target search method. Acta Aeronautica et Astronautica Sinica, 2020, 41 (5): 220- 232. |
24 | WANG N, LI Z, LIANG X L, et al Cooperative area search by UAV swarm under restricted communication distance conditions. Systems Engineering and Electronics, 2022, 44 (5): 1615- 1625. |
25 |
WU Y, WU S B, HU X T Cooperative path planning of UAVs & UGVs for a persistent surveillance task in urban environments. IEEE Internet of Things Journal, 2021, 8 (6): 4906- 4919.
doi: 10.1109/JIOT.2020.3030240 |
26 |
ZHENG X M, MA C Y An intelligent target detection method of UAV swarms based on improved KM algorithm. Chinese Journal of Aeronautics, 2021, 34 (2): 539- 553.
doi: 10.1016/j.cja.2020.07.021 |
27 |
JIAO Z Q, YAO P Y, ZHANG J Y, et al MAV/UAV task coalition phased-formation method. Journal of Systems Engineering and Electronics, 2019, 30 (2): 402- 414.
doi: 10.21629/JSEE.2019.02.18 |
28 |
NY J, FERON E, FRAZZOLI E, et al On the dubins traveling salesman problem. IEEE Trans. on Automatic Control, 2012, 57 (1): 265- 270.
doi: 10.1109/TAC.2011.2166311 |
29 |
WANG Z C, ZHANG Y M, ZHOU W H, et al Solving traveling salesman problem in the Adleman-Lipton model. Applied Mathematics and Computation, 2012, 219 (4): 2267- 2270.
doi: 10.1016/j.amc.2012.08.073 |
30 | ZHOU S D, SUN Z Q A survey on estimation of distribution algorithms. Acta Automatica Sinica, 2007, 2, 113- 124. |
31 |
SUN Y A, YEN G G, YI Z Improved regularity model-based EDA for many-objective optimization. IEEE Trans. on Evolutionary Computation, 2018, 22 (5): 662- 678.
doi: 10.1109/TEVC.2018.2794319 |
[1] | Weijian PANG, Xinyi MA, Xueming LIANG, Xiaogang LIU, Erwa DONG. Role-based Bayesian decision framework for autonomous unmanned systems [J]. Journal of Systems Engineering and Electronics, 2023, 34(6): 1397-1408. |
[2] | Feng WU, Xiuluo LIU, Jia WANG, Chao LI, Ying LIU, Jianbin SU, Ailiang ZHANG, Min WANG. Research on agile space emergency launching mission planning simulation and verification method [J]. Journal of Systems Engineering and Electronics, 2023, 34(5): 1267-1284. |
[3] | Dongdong YAO, Xiaofang WANG, Hai LIN, Zhuping WANG. Leader trajectory planning method considering constraints of formation controller [J]. Journal of Systems Engineering and Electronics, 2023, 34(5): 1294-1308. |
[4] | Yang ZHAO, Jicheng LIU, Ju JIANG, Ziyang ZHEN. Shuffled frog leaping algorithm with non-dominated sorting for dynamic weapon-target assignment [J]. Journal of Systems Engineering and Electronics, 2023, 34(4): 1007-1019. |
[5] | Gang LIU, Zhibiao AN, Songyang LAO, Wu LI. Firepower distribution method of anti-ship missile based on coupled path planning [J]. Journal of Systems Engineering and Electronics, 2022, 33(4): 1010-1024. |
[6] | Zhanwu LI, Yizhe CHANG, Yingxin KOU, Haiyan YANG, An XU, You LI. Approach to WTA in air combat using IAFSA-IHS algorithm [J]. Journal of Systems Engineering and Electronics, 2018, 29(3): 519-529. |
[7] | Jin ZHOU, Lei SHAO, Huaji WANG, Dayuan ZHANG, Humin LEI. Optimal midcourse trajectory planning considering the capture region [J]. Journal of Systems Engineering and Electronics, 2018, 29(3): 587-600. |
[8] | Jiang Zhao, Rui Zhou, and Xuelian Jin. Progress in reentry trajectory planning for hypersonic vehicle [J]. Journal of Systems Engineering and Electronics, 2014, 25(4): 627-. |
[9] | Yu Xue,Yi Zhuang, Tianquan Ni, Siru Ni, and Xuezhi Wen. Self-adaptive learning based discrete differential evolution algorithm for solving CJWTA problem [J]. Journal of Systems Engineering and Electronics, 2014, 25(1): 59-68. |
[10] | Yu Zhang, Jing Chen, and Lincheng Shen. Hybrid hierarchical trajectory planning for a fixed-wing UCAV performing air-to-surface multi-target attack [J]. Journal of Systems Engineering and Electronics, 2012, 23(4): 536-552. |
[11] | Jun Wang, Xiaoguang Gao, and Yongwen Zhu. Solving algorithm for TA optimization model based on ACO-SA [J]. Journal of Systems Engineering and Electronics, 2011, 22(4): 628-639. |
[12] | Wang Yanxia, Qian Longjun, Guo Zhi & Ma Lifeng. Weapon target assignment problem satisfying expected damage probabilities based on ant colony algorithm [J]. Journal of Systems Engineering and Electronics, 2008, 19(5): 939-944. |
[13] |
Cat Huaiping , Liu Jingxu, Chen Yingvuu & Wang Hao.
Survey of the research on dynamic weapon-target assignment problem
[J]. Journal of Systems Engineering and Electronics, 2006, 17(3): 559-565.
|
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||