Journal of Systems Engineering and Electronics ›› 2023, Vol. 34 ›› Issue (2): 515-529.doi: 10.23919/JSEE.2023.000011
• RELIABILITY • Previous Articles
Yu WANG1,2(), Tao ZHANG1,2(
), Jianjiang HUI3(
), Yajie LIU1,2,*(
)
Received:
2021-06-15
Online:
2023-04-18
Published:
2023-04-18
Contact:
Yajie LIU
E-mail:794936379@qq.com;zhangtao@nudt.edu.cn;172175263@qq.com;liuyajie@nudt.edu.cn
About author:
Supported by:
Yu WANG, Tao ZHANG, Jianjiang HUI, Yajie LIU. An anomaly detection method for spacecraft solar arrays based on the ILS-SVM model[J]. Journal of Systems Engineering and Electronics, 2023, 34(2): 515-529.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Parameter settings of each LS-SVM submodel"
Model name | C | Type of kernel functions | |
LS-SVM model 1 | 50 | Radial basis function | 0.00230 |
LS-SVM model 2 | 50 | Radial basis function | 0.00308 |
LS-SVM model 3 | 50 | Radial basis function | 0.00372 |
LS-SVM model 4 | 50 | Radial basis function | 0.00317 |
LS-SVM model 5 | 50 | Radial basis function | 0.00169 |
Table 2
Prediction performance comparison of different models"
Test set | ILS-SVM | NN-model | SVM | RF-model | MLS-SVM |
Test1 | 0.08261 | 0.09101 | 0.11064 | 0.11278 | 0.08846 |
Test2 | 0.08244 | 0.08197 | 0.11780 | 0.10537 | 0.08491 |
Test3 | 0.08037 | 0.08292 | 0.09462 | 0.09289 | 0.08208 |
Test4 | 0.07142 | 0.07224 | 0.08245 | 0.07441 | 0.07205 |
| 0.07402 | 0.07677 | 0.08680 | 0.07707 | 0.07530 |
Table 3
Prediction error of the telemetry data for each day"
Date | Prediction error | Date | Prediction error | |
September 15 | 0.05723 | September 20 | 0.58733 | |
September 16 | 0.03971 | September 21 | 0.65214 | |
September 17 | 0.03735 | September 22 | 0.65062 | |
September 18 | 0.17064 | September 23 | 0.59968 | |
September 19 | 0.44278 | September 24 | 0.70046 |
1 | PATEL M R. Spacecraft power systems. Boca Raton: CRC Press, 2004. |
2 |
CAO M D, ZHANG T, LIU Y J, et al A performance degradation model of solar cells in an on-orbit resource satellite based on peak currents. Solar Energy, 2019, 189, 26- 34.
doi: 10.1016/j.solener.2019.07.030 |
3 | CHEN Q, LIU Z G, ZHANG X F, et al. Spacecraft power system technologies. Berlin: Springer, 2020. |
4 | PENG X Y, PANG J Y, PENG Y, et al Review on anomaly detection of spacecraft telemetry data. Chinese Journal of Scientific Instrument, 2016, 37 (9): 1929- 1945. |
5 |
YAIRI T, KAWAHARA Y, FUJIMAKI R, et al Telemetry-mining: a machine learning approach to anomaly detection and fault diagnosis for space systems. Proc. of the IEEE 2nd International Conference on Space Mission Challenges for Information Technology, 2006, 1- 8.
doi: 10.1109/SMC-IT.2006.79 |
6 | HASHIMOTO M, NISHIGORI N, MIZUTANI M Anomaly detective ground support system for Mars probe NOZOMI. Proc. of the 5th International Symposium on Artificial Intelligence, Robotics and Automation in Space, 1999, 440- 483. |
7 | KURIEN J, NAYAK P P Back to the future for consistency-based trajectory tracking. Proc. of the National Conference on Artificial Intelligence, 2000, 370- 377. |
8 | NARASIMHAN S, HYDE B L A general framework for stochastic and hybrid model-based diagnosis. Proc. of the International Workshop on Principles of Diagnosis, 2007, 29- 31. |
9 | WILLIAMS B C, INGHAM M D, CHUNG S, et al Model-based programming of fault-aware systems. AI Magazine, 2003, 24 (4): 61. |
10 | MATHUR A, DEB S, PATTIPATI K R Modeling and real-time diagnostics in TEAMS-RT. Proc. of the American Control Conference, 1998, 1610- 1614. |
11 | BUNUS P, ISAKSSON O, FREY B, et al RODON-a model-based diagnosis approach for the DX diagnostic competition. Proc. of the 20th International Workshop on Principles of Diagnosis, 2009, 423- 430. |
12 | SCHAEFER P, COLGREN R D, ABBOTT R J, et al. Technologies for reliable autonomous control (TRAC) of UAVs. Proc. of the 19th Digital Avionics Systems Conference, 2000. DOI: 10.1109/DASC.2000.886896. |
13 | BARRETT A. Model compilation for real-time planning and diagnosis with feedback. Proc. of the 19th International Joint Conference on Artificial Intelligence, 2005. http://hdl.handle.net/2014/40205. |
14 | MARTINEZ J. Drmust-a data mining approach for anomaly investigation. SpaceOps, 2012. DOI: https://doi.org/10.2514/6.2012-1275109. |
15 |
TRUONG C D, ANH D T An efficient method for motif and anomaly detection in time series based on clustering. International Journal of Business Intelligence and Data Mining, 2015, 10 (4): 356- 377.
doi: 10.1504/IJBIDM.2015.072212 |
16 | REN W W, HU L, ZHAO K An efficient parallel anomaly detection algorithm based on hierarchical clustering. Journal of Networks, 2013, 8 (3): 672- 679. |
17 |
LIU Z P, PI D C, JIANG J F Density-based trajectory outlier detection algorithm. Journal of Systems Engineering and Electronics, 2013, 24 (2): 335- 340.
doi: 10.1109/JSEE.2013.00042 |
18 | SUN M Y Research on discords detect on time series based on distance and density. Computer Engineering and Applications, 2012, 48 (20): 11- 17. |
19 |
LIU D T, PANG J Y, SONG G, et al Fragment anomaly detection with prediction and statistical analysis for satellite telemetry. IEEE Access, 2017, 5, 19269- 19281.
doi: 10.1109/ACCESS.2017.2754447 |
20 |
LI X J, ZHANG T, LIU Y J Detection of voltage anomalies in spacecraft storage batteries based on a deep belief network. Sensors, 2019, 19 (21): 4702.
doi: 10.3390/s19214702 |
21 | HUNDMAN K, CONSTANTINOU V, LAPORTE C, et al Detecting spacecraft anomalies using LSTMS and nonparametric dynamic thresholding. Proc. of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2018, 387- 395. |
22 |
JIN W H, SUN B, LI Z D, et al Detecting anomalies of satellite power subsystem via stage-training denoising autoencoders. Sensors, 2019, 19 (14): 3216.
doi: 10.3390/s19143216 |
23 | SU Y, ZHAO Y J, NIU C H, et al Robust anomaly detection for multivariate time series through stochastic recurrent neural network. Proc. of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data mining, 2019, 2828- 2837. |
24 | VON KRANNICHFELDT L, WANG Y, HUG G Online ensemble learning for load forecasting. IEEE Trans. on Power Systems, 2020, 36 (1): 545- 548. |
25 | QIAN H U, CHEN H, SUN Z An ensemble learning predictive model for short-term wind speed forecasting. Proc. of the Chinese Society of Universities for Electric Power System and its Automation, 2016, 1, 1- 4. |
26 | SHI J Q, MA L Y, LI C C, et al Daily peak load forecasting based on sequential-parallel ensemble learning. Proc. of the Chinese Society for Electrical Engineering, 2020, 40 (14): 4463- 4472. |
27 | DONG J Y, PANG J Y, PENG Y, et al Spacecraft telemetry data anomaly detection method based on ensemble LSTM. Chinese Journal of Scientific Instrument, 2019, 40 (7): 22- 29. |
28 |
SUYKENS J A K, VANDEWALLE J Least squares support vector machine classifiers. Neural Processing Letters, 1999, 9 (3): 293- 300.
doi: 10.1023/A:1018628609742 |
29 | BREIMAN L Bagging predictors. Machine Learning, 1996, 24 (2): 123- 140. |
30 |
YAGER R R Induced aggregation operators. Fuzzy Sets and Systems, 2003, 137 (1): 59- 69.
doi: 10.1016/S0165-0114(02)00432-3 |
31 | OMAR B M, SAMIR H, AHMED Z S, et al A comparative investigation of maximum power point tracking techniques for grid connected PV system under various weather conditions. Proc. of the 5th International Conference on Electrical Engineering, 2017, 1- 5. |
[1] | Xuan PENG, Xiaoping SHI, Yupeng GONG. Integrated modeling of spacecraft relative motion dynamics using dual quaternion [J]. Journal of Systems Engineering and Electronics, 2018, 29(2): 367-377. |
[2] | Tian Xinguang, Duan Miyi, Sun Chunlai & Liu Xin. Detecting network intrusions by data mining and variable-length sequence pattern matching [J]. Journal of Systems Engineering and Electronics, 2009, 20(2): 405-411. |
[3] | Tian Xinguang, Duan Miyi, Sun Chunlai & Li Wenfa. Intrusion detection based on system calls and homogeneous Markov chains [J]. Journal of Systems Engineering and Electronics, 2008, 19(3): 598-605. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||