Fabry-Perot (FP) antennas have characteristics of planar structures combined with high gain, and they have been widely used in wireless communications. With the progress of ongoing research, FP antennas have achieved various capabilities, but many of them are still under development, such as low-profile, wideband, circular polarization, multi-band, low-radar cross section (RCS) and reconfigurable features. This paper discusses the theoretical analysis methods and research progress of FP antennas, and explains the realization methods of different features of FP antennas. In order to indicate different technologies for realizing various capabilities, the key technologies and features of some of the latest designs are described. Finally, the research situation and prospects of FP antennas are summarized to guide their research directions in the future.
Nonuniform linear arrays, such as coprime array and nested array, have received great attentions because of the increased degrees of freedom (DOFs) and weakened mutual coupling. In this paper, inspired by the existing coprime array, we propose a high-order extended coprime array (HoECA) for improved direction of arrival (DOA) estimation. We first derive the closed-form expressions for the range of consecutive lags. Then, by changing the inter-element spacing of a uniform linear array (ULA), three cases are proposed and discussed. It is indicated that the HoECA can obtain the largest number of consecutive lags when the spacing takes the maximum value. Finally, by comparing it with the other sparse arrays, the optimized HoECA enjoys a larger number of consecutive lags with mitigating mutual coupling. Simulation results are shown to evaluate the superiority of HoECA over the others in terms of DOF, mutual coupling leakage and estimation accuracy.
Most of the near-field source localization methods are developed with the approximated signal model, because the phases of the received near-field signal are highly non-linear. Nevertheless, the approximated signal model based methods suffer from model mismatch and performance degradation while the exact signal model based estimation methods usually involve parameter searching or multiple decomposition procedures. In this paper, a search-free near-field source localization method is proposed with the exact signal model. Firstly, the approximative estimates of the direction of arrival (DOA) and range are obtained by using the approximated signal model based method through parameter separation and polynomial rooting operations. Then, the approximative estimates are corrected with the exact signal model according to the exact expressions of phase difference in near-field observations. The proposed method avoids spectral searching and parameter pairing and has enhanced estimation performance. Numerical simulations are provided to demonstrate the effectiveness of the proposed method.
This paper examines the direction of arrival (DOA) estimation for polarized signals impinging on a sparse vector sensor array which is based on the maximum interelement spacing constraint (MISC). The vector array effectively utilizes the polarization domain information of incident signals, and the quaternion model is adopted for signals polarization characteristic maintenance and computational burden reduction. The features of MISC arrays are crucial to the mutual coupling effects reduction and higher degrees of freedom (DOFs). The quaternion data model based on vector MISC arrays is established, which extends the scalar MISC array into the vector MISC array. Based on the model, a quaternion multiple signal classification (MUSIC) algorithm based on vector MISC arrays is proposed for DOA estimation. The algorithm combines the advantages of the quaternion model and the vector MISC array to enhance the DOA estimation performance. Analytical simulations are performed to certify the capability of the algorithm.
Orbital angular momentum (OAM) at radio frequency (RF) has attracted more and more attention as a novel approach of multiplexing a set of orthogonal OAM modes on the same frequency channel to achieve high spectral efficiency (SE). However, the precondition for maintaining the orthogonality among different OAM modes is perfect alignment of the transmit and receive uniform circular arrays (UCAs), which is difficult to be satisfied in practical wireless communication scenarios. Therefore, to achieve available multi-mode OAM broadband wireless communication, we first investigate the effect of oblique angles on the transmission performance of the multi-mode OAM broadband system in the non-parallel misalignment case. Then, we compare the UCA-based RF analog and baseband digital transceiver structures and corresponding beam steering schemes. Mathematical analysis and numerical simulations validate that the SE of the misaligned multi-mode OAM broadband system is quite low, while analog and digital beam steering (DBS) both can significantly improve the SE of the system. However, DBS can obtain higher SE than analog beam steering especially when the bandwidth and the number of array elements are large, which validates that the baseband digital transceiver with DBS is more suitable for multi-mode OAM broadband wireless communication systems in practice.
A multi-objective optimization based robust beamforming (BF) scheme is proposed to realize secure transmission in a cognitive satellite and unmanned aerial vehicle (UAV) network. Since the satellite network coexists with the UAV network, we first consider both achievable secrecy rate maximization and total transmit power minimization, and formulate a multi-objective optimization problem (MOOP) using the weighted Tchebycheff approach. Then, by supposing that only imperfect channel state information based on the angular information is available, we propose a method combining angular discretization with Taylor approximation to transform the non-convex objective function and constraints to the convex ones. Next, we adopt semi-definite programming together with randomization technology to solve the original MOOP and obtain the BF weight vector. Finally, simulation results illustrate that the Pareto optimal trade-off can be achieved, and the superiority of our proposed scheme is confirmed by comparing with the existing BF schemes.