Journal of Systems Engineering and Electronics ›› 2023, Vol. 34 ›› Issue (2): 530542.doi: 10.23919/JSEE.2023.000042
• RELIABILITY • Previous Articles
Fengfei WANG(), Shengjin TANG(), Liang LI(), Xiaoyan SUN(), Chuanqiang YU(), Xiaosheng SI()
Received:
20210927
Online:
20230418
Published:
20230418
Contact:
Shengjin TANG
Email:18755187114@163.com;tangshengjin27@126.com;xzj_921@163.com;sunxiaoyantsj@126.com;fishychq@163.com;sixiaosheng@gmail.com
About author:
Supported by:
Fengfei WANG, Shengjin TANG, Liang LI, Xiaoyan SUN, Chuanqiang YU, Xiaosheng SI. Remaining useful life prediction of aeroengines based on randomcoefficient regression model considering random failure threshold[J]. Journal of Systems Engineering and Electronics, 2023, 34(2): 530542.
29 
TANG S J, YU C Q, FENG Y B, et al Remaining useful life estimation based on Wiener degradation processes with random failure threshold. Journal of Central South University, 2016, 23 (9): 2230 2241.
doi: 10.1007/s117710163281z 
30  USYNIN A, HINES J W, URMANOV A Uncertain failure thresholds in cumulative damage models. Proc. of the Annual Reliability and Maintainability Symposium, 2008, 334 340. 
31 
ZOU L, LI Y, XU F Y An adversarial denoising convolutional neural network for fault diagnosis of rotating machinery under noisy environment and limited sample size case. Neurocomputing, 2020, 407, 105 120.
doi: 10.1016/j.neucom.2020.04.074 
32 
WANG W B, CARR M, XU W J, et al A model for residual life prediction based on Brownian motion with an adaptive drift. Microelectronics Reliability, 2011, 51 (2): 285 293.
doi: 10.1016/j.microrel.2010.09.013 
33 
WANG Z Z, CHEN Y X, CAI Z Y, et al Methods for predicting the remaining useful life of equipment in consideration of the random failure threshold. Journal of Systems Engineering and Electronics, 2020, 31 (2): 415 431.
doi: 10.23919/JSEE.2020.000018 
34 
TANG S J, YU C Q, WANG X, et al Remaining useful life prediction of lithiumion batteries based on the Wiener process with measurement error. Energies, 2014, 7 (2): 520 547.
doi: 10.3390/en7020520 
35 
SI X S, WANG W B, HU C H, et al Remaining useful life estimation based on a nonlinear diffusion degradation process. IEEE Trans. on Reliability, 2012, 61 (1): 50 67.
doi: 10.1109/TR.2011.2182221 
36  CAI Z Y, WANG Z Z, DONG X X, et al Remaining useful lifetime prediction of nonlinear system with random effect and measurement error. Proc. of the Prognostics and System Health Management Conference, 2018, 474 479. 
37 
PAN D H, LU S L, LIU Y B, et al Degradation data analysis using a Wiener degradation model with threesource uncertainties. IEEE Access, 2019, 7, 37896 37907.
doi: 10.1109/ACCESS.2019.2906325 
38  BAE S J, KUO W, KVAM P H Degradation models and implied lifetime distributions. Reliability Engineering & System Safety, 2007, 92 (5): 601 608. 
39 
GEBRAEEL N, PAN J Prognostic degradation models for computing and updating residual life distributions in a timevarying environment. IEEE Trans. on Reliability, 2008, 57 (4): 539 550.
doi: 10.1109/TR.2008.928245 
40 
GAO Z Y, LI J W, WANG R X Prognostics uncertainty reduction by righttime prediction of remaining useful life based on hidden Markov model and proportional hazard model. Eksploatacja i Niezawodnosc  Maintenance and Reliability, 2021, 23 (1): 154 165.
doi: 10.17531/ein.2021.1.16 
1  ZHANG Y, XIN Y Q, LIU Z W, et al Health status assessment and remaining useful life prediction of aeroengine based on BiGRU and MMoE. Reliability Engineering & System Safety, 2022, 220, 108263. 
2 
LIU J Q, ZHANG M L, ZUO H F, et al Remaining useful life prognostics for aeroengine based on superstatistics and information fusion. Chinese Journal of Aeronautics, 2014, 27 (5): 1086 1096.
doi: 10.1016/j.cja.2014.08.013 
3 
TANG D Y, CAO J R, YU J S Remaining useful life prediction for engineering systems under dynamic operational conditions: a semiMarkov decision processbased approach. Chinese Journal of Aeronautics, 2019, 32 (3): 627 638.
doi: 10.1016/j.cja.2018.08.015 
4  TSUI K L, CHEN N, ZHOU Q, et al Prognostics and health management: a review on data driven approaches. Mathematical Problems in Engineering, 2015, 2015, 793161. 
5  PECHT M G, KANG M. Prognostics and health management of electronics. New Jersey: IEEE Press, 2018. 
6  XU X D, TANG S J, YU C A Q, et al Remaining useful life prediction of lithiumion batteries based on Wiener process under timevarying temperature condition. Reliability Engineering & System Safety, 2021, 214, 107675. 
7 
TANG S J, XU X D, YU C Q, et al Remaining useful life prediction with fusing failure time data and field degradation data with random effects. IEEE Access, 2020, 8, 11964 11978.
doi: 10.1109/ACCESS.2019.2948263 
8  SI X S, WANG W B, HU C H, et al A Wienerprocessbased degradation model with a recursive filter algorithm for remaining useful life estimation. Mechanical Systems and Signal Processing, 2013, 35 (1/2): 219 237. 
9 
ZHANG J X, HU C H, HE X, et al A novel lifetime estimation method for twophase degrading systems. IEEE Trans. on Reliability, 2019, 68 (2): 689 709.
doi: 10.1109/TR.2018.2829844 
10 
HU C H, PEI H, WANG Z Q, et al A new remaining useful life estimation method for equipment subjected to intervention of imperfect maintenance activities. Chinese Journal of Aeronautics, 2018, 31 (3): 514 528.
doi: 10.1016/j.cja.2018.01.009 
11 
TANG S J, WANG F F, SUN X Y, et al Unbiased parameters estimation and misspecification analysis of Wiener processbased degradation model with random effects. Applied Mathematical Modelling, 2022, 109, 134 160.
doi: 10.1016/j.apm.2022.03.039 
12 
ZHANG K, ZHAO P, SUN C F, et al Remaining useful life prediction of aircraft lithiumion batteries based on Fdistribution particle filter and kernel smoothing algorithm. Chinese Journal of Aeronautics, 2020, 33 (5): 1517 1531.
doi: 10.1016/j.cja.2020.01.007 
41 
SI X S, LI T M, ZHANG Q, et al Prognostics for linear stochastic degrading systems with survival measurements. IEEE Trans. on Industrial Electronics, 2020, 67 (4): 3202 3215.
doi: 10.1109/TIE.2019.2908617 
42 
SI X S, LI T M, ZHANG Q A general stochastic degradation modeling approach for prognostics of degrading systems with surviving and uncertain measurements. IEEE Trans. on Reliability, 2019, 68 (3): 1080 1100.
doi: 10.1109/TR.2019.2908492 
43  SAXENA A, GOEBEL K, SIMON D, et al. Damage propagation modeling for aircraft engine runtofailure simulation. Proc. of the International Conference on Prognostics and Health Management, 2008. DOI: 10.1109/PHM.2008.4711414. 
44  WANG T Y, YU J B, SIEGEL D, et al. A similaritybased prognostics approach for remaining useful life estimation of engineered systems. Proc. of the International Conference on Prognostics and Health Management, 2008. DOI: 10.1109/PHM.2008.4711421. 
45 
SI X S, WANG W B, CHEN M Y, et al A degradation pathdependent approach for remaining useful life estimation with an exact and closedform solution. European Journal of Operational Research, 2013, 226 (1): 53 66.
doi: 10.1016/j.ejor.2012.10.030 
13 
LEI Y G, LI N P, GUO L, et al Machinery health prognostics: a systematic review from data acquisition to RUL prediction. Mechanical Systems and Signal Processing, 2018, 104, 799 834.
doi: 10.1016/j.ymssp.2017.11.016 
14 
WANG C S, LU N Y, CHENG Y H, et al A datadriven aeroengine degradation prognostic strategy. IEEE Trans. on Cybernetics, 2021, 51 (3): 1531 1541.
doi: 10.1109/TCYB.2019.2938244 
15 
SHEN L J, WANG Y D, ZHAI Q Q, et al Degradation modeling using stochastic processes with random initial degradation. IEEE Trans. on Reliability, 2019, 68 (4): 1320 1329.
doi: 10.1109/TR.2018.2885133 
16 
WANG Y, PENG Y Z, ZI Y Y, et al A twostage datadrivenbased prognostic approach for bearing degradation problem. IEEE Trans. on Industrial Informatics, 2016, 12 (3): 924 932.
doi: 10.1109/TII.2016.2535368 
17 
WAN C H, LIU Z G, TANG S J, et al Remaining useful life prediction under imperfect prior degradation information. IEEE Access, 2020, 8, 189262 189275.
doi: 10.1109/ACCESS.2020.3030632 
18 
HAN Y Y, MA C L, TANG S J, et al Residual life estimation of lithiumion batteries based on nonlinear Wiener process with measurement error. Proceedings of the Institution of Mechanical Engineers Part OJournal of Risk and Reliability, 2023, 237 (1): 133 151.
doi: 10.1177/1748006X221080345 
19  XIANG S, QIN Y, LUO J, et al Multicellular LSTMbased deep learning model for aeroengine remaining useful life prediction. Reliability Engineering & System Safety, 2021, 216, 107927. 
20  SON K L, FOULADIRAD M, BARROS A, et al Remaining useful life estimation based on stochastic deterioration models: a comparative study. Reliability Engineering & System Safety, 2013, 112, 165 175. 
21 
SI X S, WANG W B, HU C H, et al Remaining useful life estimation —a review on the statistical data driven approaches. European Journal of Operational Research, 2011, 213 (1): 1 14.
doi: 10.1016/j.ejor.2010.11.018 
22 
LI J, JING B, DAI H D, et al Remaining useful life prediction based on variation coefficient consistency test of a Wiener process. Chinese Journal of Aeronautics, 2018, 31 (1): 107 116.
doi: 10.1016/j.cja.2017.11.001 
23 
WANG Z Q, WANG W B, HU C H, et al A realtime prognostic method for the drift errors in the inertial navigation system by a nonlinear randomcoefficient regression model. Acta Astronautica, 2014, 103, 45 54.
doi: 10.1016/j.actaastro.2014.06.034 
24 
LU C J, MEEKER W Q Using degradation measures to estimate a timetofailure distribution. Technometrics, 1993, 35 (2): 161 174.
doi: 10.1080/00401706.1993.10485038 
25 
GEBRAEEL N Z, LAWLEY M A, LI R, et al Residuallife distributions from component degradation signals: a Bayesian approach. IIE Transactions, 2005, 37 (6): 543 557.
doi: 10.1080/07408170590929018 
26 
ZHANG Z X, SI X S, HU C H, et al Degradation data analysis and remaining useful life estimation: a review on Wienerprocessbased methods. European Journal of Operational Research, 2018, 271 (3): 775 796.
doi: 10.1016/j.ejor.2018.02.033 
27  WANG C H, LIU Z G, TANG S J, et al Remaining useful life prediction based on the nonlinear random coefficient regression model under imperfect prior information. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47 (12): 2542 2551. 
28 
WEI M H, CHEN M Y, ZHOU D H Multisensor information based remaining useful life prediction with anticipated performance. IEEE Trans. on Reliability, 2013, 62 (1): 183 198.
doi: 10.1109/TR.2013.2241232 
[1]  Fengfei WANG, Shengjin TANG, Xiaoyan SUN, Liang LI, Chuanqiang YU, Xiaosheng SI. Remaining useful life prediction based on nonlinear random coefficient regression model with fusing failure time data [J]. Journal of Systems Engineering and Electronics, 2023, 34(1): 247258. 
[2]  Junqiu ZHANG, Yong WANG, Xiaofei LU. Distributed inverse synthetic aperture radar imaging of ship target with complex motion [J]. Journal of Systems Engineering and Electronics, 2021, 32(6): 13251337. 
[3]  Chao WU, Erxiao LIU, Zhihua JIAN. Twostep compressed acquisition method for Doppler frequency and Doppler rate estimation in highdynamic and weak signal environments [J]. Journal of Systems Engineering and Electronics, 2021, 32(4): 831840. 
[4]  Zezhou WANG, Yunxiang CHEN, Zhongyi CAI, Yangjun GAO, Lili WANG. Methods for predicting the remaining useful life of equipment in consideration of the random failure threshold [J]. Journal of Systems Engineering and Electronics, 2020, 31(2): 415431. 
[5]  Zhongyi CAI, Zezhou WANG, Yunxiang CHEN, Jiansheng GUO, Huachun XIANG. Remaining useful lifetime prediction for equipment based on nonlinear implicit degradation modeling [J]. Journal of Systems Engineering and Electronics, 2020, 31(1): 194205. 
[6]  Hanwen ZHANG, Maoyin CHEN, Donghua ZHOU. Remaining useful life prediction for a nonlinear multidegradation system with public noise [J]. Journal of Systems Engineering and Electronics, 2018, 29(2): 429435. 
[7]  Junliang Liu, Yanfang Li, Shangfeng Chen, Huanzhang Lu, and Bendong Zhao. Micromotion dynamics analysis of ballistic targets based on infrared detection [J]. Systems Engineering and Electronics, 2017, 28(3): 472480. 
[8]  Weihong Fu, Yongqiang Hei, and Xiaohui Li. UBSS and blind parameters estimation algorithms for synchronous orthogonal FH signals [J]. Journal of Systems Engineering and Electronics, 2014, 25(6): 911920. 
[9]  Zhiliang Fan1, Guangbin Liu1, Xiaosheng Si1,2,*, Qi Zhang1, and Qinghua Zhang3. Degradation datadriven approach for remaining useful life estimation [J]. Journal of Systems Engineering and Electronics, 2013, 24(1): 173182. 
[10]  Jiuping Xu and Lei Xu. Health management based on fusion prognostics for avionics systems [J]. Journal of Systems Engineering and Electronics, 2011, 22(3): 428436. 
[11]  Wenchen Li, Jin Liu, Xuesong Wang, Shunping Xiao, and Guoyu Wang. Rotational parameters estimation of maneuvering target in ISAR imaging [J]. Journal of Systems Engineering and Electronics, 2010, 21(1): 4146. 
[12]  Lu Feng, Huang Jinquan & Qiu Xiaojie. Application of multioutputs LSSVR by PSO to the aeroengine model [J]. Journal of Systems Engineering and Electronics, 2009, 20(5): 11531158. 
Viewed  
Full text 


Abstract 

