Journal of Systems Engineering and Electronics ›› 2023, Vol. 34 ›› Issue (1): 47-55.doi: 10.23919/JSEE.2023.000003
• REMOTE SENSING • Previous Articles Next Articles
Man ZHANG1(), Guanyong WANG2,*(), Feiming WEI3,4(), Xue JIN5()
Received:
2022-04-06
Accepted:
2022-12-29
Online:
2023-02-18
Published:
2023-03-03
Contact:
Guanyong WANG
E-mail:manzhang401@gzhu.edu.cn;guanbingwang@126.com;weifeiming@sjtu.edu.cn;cara_snow@163.com
About author:
Supported by:
Man ZHANG, Guanyong WANG, Feiming WEI, Xue JIN. Coherent range-dependent map-drift algorithm for improving SAR motion compensation[J]. Journal of Systems Engineering and Electronics, 2023, 34(1): 47-55.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | CARRAR W G, GOODMAN R S, MAJEWSKI R M. Spotlight synthetic aperture radar: signal processing algorithm. Boston: Artech House, 1995. |
2 | CUMMING I G, WONG F H. Digital processing of synthetic aperture radar data: algorithms and implementation. Norwood: Artech House, 2005. |
3 |
MOREIRA A, HUANG Y H Airborne SAR processing of highly squinted data using a chirp scaling approach with integrated motion compensation. IEEE Trans. on Geoscience and Remote Sensing, 1994, 32 (5): 1029- 1040.
doi: 10.1109/36.312891 |
4 |
LI Y K, LIU C, WANG Y F, et al A robust motion error estimation method based on raw data. IEEE Trans. on Geoscience and Remote Sensing, 2012, 50 (7): 2780- 2790.
doi: 10.1109/TGRS.2011.2175737 |
5 |
YI T Z, HE Z H, HE F, et al A compensation method for airborne SAR with varying accelerated motion error. Remote Sensing, 2018, 10 (7): 1124.
doi: 10.3390/rs10071124 |
6 | FAN B K, DING Z G, GAO W B, et al An improved motion compensation method for high resolution UAV SAR. Science China Information Sciences, 2014, 57 (12): 1- 13. |
7 |
ZHANG L, QIAO Z J, YANG L, et al A robust motion compensation approach for UAV SAR imagery. IEEE Trans. on Geoscience and Remote Sensing, 2012, 50 (8): 3202- 3218.
doi: 10.1109/TGRS.2011.2180392 |
8 |
GONZALEZ PARTIDA J T, ALMOROX GONZALEZ P, BURGOS GARCIA M SAR system for UAV operation with motion error compensation beyond the resolution cell. Sensors, 2008, 8 (5): 3384- 3405.
doi: 10.3390/s8053384 |
9 | XU W D, WANG B N, XIANG M S, et al A novel autofocus framework for UAV SAR imagery: motion error extraction from symmetric triangular FMCW differential signal. IEEE Trans. on Geoscience and Remote Sensing, 2022, 60, 5218915. |
10 |
ZHOU S, YANG L, ZHAO L F, et al Quasi-polar-based FFBP algorithm for miniature UAV SAR imaging without navigational data. IEEE Trans. on Geoscience and Remote Sensing, 2017, 55 (12): 7053- 7065.
doi: 10.1109/TGRS.2017.2739133 |
11 |
XING M D, JIANG X W, WU R B, et al Motion compensation for UAV SAR based on raw radar data. IEEE Trans. on Geoscience and Remote Sensing, 2009, 47 (8): 2870- 2883.
doi: 10.1109/TGRS.2009.2015657 |
12 |
LI Y K, YOUNG S O Kalman filter disciplined phase gradient autofocus for stripmap SAR. IEEE Trans. on Geoscience and Remote Sensing, 2020, 58 (9): 6298- 6308.
doi: 10.1109/TGRS.2020.2976655 |
13 | LIN H, CHEN J L, XING M D, et al Time-domain autofocus for ultrahigh resolution SAR based on azimuth scaling transformation. IEEE Trans. on Geoscience and Remote Sensing, 2022, 60, 5227812. |
14 |
WAHL D E, EICHEL P H, GHIGLIA D C, et al Phase gradient autofocus-a robust tool for high resolution SAR phase correction. IEEE Trans. on Aerospace and Electronic Systems, 1994, 30 (3): 827- 835.
doi: 10.1109/7.303752 |
15 |
HUANG Y, LIU F Y, CHEN Z Y, et al An improved map-drift algorithm for unmanned aerial vehicle SAR imaging. IEEE Geoscience and Remote Sensing Letters, 2021, 18 (11): 1- 5.
doi: 10.1109/LGRS.2020.3011973 |
16 | CHEN J L, XING M D, YU H W, et al. Motion compensation autofocus in airborne synthetic aperture radar: a review. IEEE Geoscience and Remote Sensing Magazine, 2022, 10(1): 185−206. |
17 | CHEN J L, LIANG B G, ZHANG J C, et al Efficiency and robustness improvement of airborne SAR motion compensation with high resolution and wide swath. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 4004005. |
18 | DING Z G, LI L H, WANG Y, et al An autofocus approach for UAV-based ultrawideband ultrawidebeam SAR data with frequency-dependent and 2-D space-variant motion errors. IEEE Trans. on Geoscience and Remote Sensing, 2022, 60, 5203518. |
19 |
WANG G Y, ZHANG M, HUANG Y, et al Robust two-dimensional spatial-variant map-drift algorithm for UAV SAR autofocusing. Remote Sensing, 2019, 11 (3): 340.
doi: 10.3390/rs11030340 |
20 | MENG Z C, ZHANG L, LI J, et al Time-domain azimuth-variant MOCO algorithm for airborne SAR imaging. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 4508605. |
21 |
PRATS P, REIGBER A, MALLORQUI J J Topography-dependent motion compensation for repeat-pass interferometric SAR systems. IEEE Geoscience and Remote Sensing Letters, 2005, 2 (2): 206- 210.
doi: 10.1109/LGRS.2005.846005 |
22 |
ZHANG L, WANG G Y, QIAO Z J, et al Azimuth motion compensation with improved subaperture algorithm for airborne SAR imaging. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10 (1): 184- 193.
doi: 10.1109/JSTARS.2016.2577588 |
23 | CHEN X X, WAN M H, XING M D, et al Azimuth variant motion error compensation algorithm for airborne SAR imaging based on Doppler adjustment. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 4010305. |
24 | REN Y, TANG S Y, GUO P, et al 2-D spatially variant motion error compensation for high-resolution airborne SAR based on range-doppler expansion approach. IEEE Trans. on Geoscience and Remote Sensing, 2022, 60, 5201413. |
25 |
LU J Y, ZHANG L, QUAN Y H, et al Parametric azimuth-variant motion compensation for forward-looking multichannel SAR imagery. IEEE Trans. on Geoscience and Remote Sensing, 2021, 59 (10): 8521- 8537.
doi: 10.1109/TGRS.2020.3047449 |
26 |
LU Q R, GAO Y S, HUANG P H, et al Range- and aperture-dependent motion compensation based on precise frequency division and chirp scaling for synthetic aperture radar. IEEE Sensors Journal, 2019, 19 (4): 1435- 1442.
doi: 10.1109/JSEN.2018.2881116 |
27 |
YANG M D, ZHU D Y Efficient space-variant motion compensation approach for ultra-high-resolution SAR based on subswath processing. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11 (6): 2090- 2103.
doi: 10.1109/JSTARS.2018.2799601 |
28 |
ZHANG L, HU M Q, WANG G Y, et al Range-dependent map-drift algorithm for focusing UAV SAR imagery. IEEE Geoscience and Remote Sensing Letters, 2016, 13 (8): 1158- 1162.
doi: 10.1109/LGRS.2016.2574752 |
29 |
SAMCZYNSKI P, KULPA K S Coherent mapdrift technique. IEEE Trans. on Geoscience and Remote Sensing, 2010, 48 (3): 1505- 1517.
doi: 10.1109/TGRS.2009.2032241 |
30 |
SAMCZYNSKI P Super convergent velocity estimator for an autofocus coherent mapdrift technique. IEEE Trans. on Geoscience and Remote Sensing, 2012, 9 (2): 204- 208.
doi: 10.1109/LGRS.2011.2163700 |
31 |
ZHANG L, SHENG J L, XING M D, et al Wavenumber-domain autofocusing for highly squinted UAV SAR imagery. IEEE Sensors Journal, 2012, 12 (5): 1574- 1588.
doi: 10.1109/JSEN.2011.2175216 |
[1] | Xiuli KOU, Guanyong WANG, Jun LI, Jie CHEN. Coherent change detection of fine traces based on multi-angle SAR observations [J]. Journal of Systems Engineering and Electronics, 2023, 34(1): 1-8. |
[2] | He TIAN, Chunzhu DONG, Hongcheng YIN, Li YUAN. Airborne sparse flight array SAR 3D imaging based on compressed sensing in frequency domain [J]. Journal of Systems Engineering and Electronics, 2023, 34(1): 56-67. |
[3] | Hao FENG, Jianzhong WU, Lu ZHANG, Mingsheng LIAO. Unsupervised change detection of man-made objects using coherent and incoherent features of multi-temporal SAR images [J]. Journal of Systems Engineering and Electronics, 2022, 33(4): 896-906. |
[4] | Kai ZHOU, Daojing LI, Anjing CUI, Dong HAN, He TIAN, Haifeng YU, Jianbo DU, Lei LIU, Yu ZHU, Running ZHANG. Sparse flight spotlight mode 3-D imaging of spaceborne SAR based on sparse spectrum and principal component analysis [J]. Journal of Systems Engineering and Electronics, 2021, 32(5): 1143-1151. |
[5] | Xuying XIONG, Gen LI, Yanheng MA, Lina CHU. New slant range model and azimuth perturbation resampling based high-squint maneuvering platform SAR imaging [J]. Journal of Systems Engineering and Electronics, 2021, 32(3): 545-558. |
[6] | Jing FANG, Shaohai HU, Xiaole MA. SAR image de-noising via grouping-based PCA and guided filter [J]. Journal of Systems Engineering and Electronics, 2021, 32(1): 81-91. |
[7] | Wensheng CHANG, Haihong TAO, Yanbin LIU, Guangcai SUN. Design of synthetic aperture radar low-intercept radio frequency stealth [J]. Journal of Systems Engineering and Electronics, 2020, 31(1): 64-72. |
[8] | Chun LIU, Chunhua XIE, Jian YANG, Yingying XIAO, Junliang BAO. A method for coastal oil tank detection in polarimetric SAR images based on recognition of T-shaped harbor [J]. Journal of Systems Engineering and Electronics, 2018, 29(3): 499-509. |
[9] | Rui Zhang and Min Zhang. SAR target recognition based on active contour without edges [J]. Systems Engineering and Electronics, 2017, 28(2): 276-281. |
[10] | Xianghui Yuan and Tao Liu. Texture invariant estimation of equivalent number of looks based on log-cumulants in polarimetric radar imagery [J]. Systems Engineering and Electronics, 2017, 28(1): 58-. |
[11] | Hongyin Shi, Qiuxiao Zhou, Xiaoyan Yang, and Qiusheng Lian. SAR imaging method for sea scene target based on improved phase retrieval algorithm [J]. Journal of Systems Engineering and Electronics, 2016, 27(6): 1176-1182. |
[12] | Sheng Zhang, Guangcai Sun, and Mengdao Xing. Full aperture imaging algorithm for highly squinted TOPS SAR [J]. Journal of Systems Engineering and Electronics, 2016, 27(6): 1168-1175. |
[13] | Lin Yang, Mengdao Xing, and Guangcai Sun. Ionosphere correction algorithm for spaceborne SAR imaging [J]. Journal of Systems Engineering and Electronics, 2016, 27(5): 993-1000. |
[14] | Lin Zhang and Yicheng Jiang. Imaging algorithm of multi-ship motion target based on compressed sensing [J]. Systems Engineering and Electronics, 2016, 27(4): 790-. |
[15] | Lun Ma, Guisheng Liao, Aifei Liu, Yanling Jiang, and Ling Chen. Array-error estimation method for multi-channel SAR systems in azimuth [J]. Systems Engineering and Electronics, 2016, 27(4): 815-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||