Journal of Systems Engineering and Electronics ›› 2024, Vol. 35 ›› Issue (2): 495508.doi: 10.23919/JSEE.2023.000117
• CONTROL THEORY AND APPLICATION • Previous Articles
Luyi YANG^{1}^{,}^{2}(), Haiyang LI^{1}^{,}^{3}(), Jin ZHANG^{1}^{,}^{3}^{,}*(), Yuehe ZHU^{1}^{,}^{3}()
Received:
20210916
Online:
20240418
Published:
20240418
Contact:
Jin ZHANG
Email:yangluyi@nudt.edu.cn;lihaiyang@nudt.edu.cn;zhangjin@nudt.edu.cn;zhuyuehe@nudt.edu.cn
About author:
Supported by:
Luyi YANG, Haiyang LI, Jin ZHANG, Yuehe ZHU. Fast solution to the free return orbit’s reachable domain of the manned lunar mission by deep neural network[J]. Journal of Systems Engineering and Electronics, 2024, 35(2): 495508.
Table 1
CL of eight orbit types of FRO"
Type  Name  TLI phase  VCP phase  PRL phase 
I  I0  Ascending  Ascending  Ascending 
I1  Ascending  Ascending  Descending  
II  II0  Ascending  Descending  Ascending 
II1  Ascending  Descending  Descending  
III  III0  Descending  Ascending  Ascending 
III1  Descending  Ascending  Descending  
IV  IV0  Descending  Descending  Ascending 
IV1  Descending  Descending  Descending 
Table 2
Ranges of the orbit learning database of FROs"
Parameter  Range 
26−30  
40−44  
5.5−6.0  
20290401 00:00:00−20290701 00:00:00  
TLI phase  Ascending, Descending 
PRL phase  Ascending, Descending 
VCP phase  Ascending, Descending 
Table 4
Learning features of the RG model"
Name  Variable 
Semimajor axis  
Eccentricity  
Inclination  
RAAN  
Argument of latitude  
LTO height  
LTO inclination  
PRL height  
VCP inclination  
VCP height 
Table 8
Learning results for the four RG models"
Orbit type  Inclination MSE/(°)  RAAN MSE/(°)  Inclination MAE/(°)  RAAN MAE/(°)  Training time/s 
I0  553  
I1  373  
II0  523  
II1  461  
III0  528  
III1  545  
IV0  542  
IV1  535  
Average  507.5 
Table 10
Difference in the geocentric position of the recognition tool and the landing site (°)"
Number  Method  
Monte Carlo data  PRL method  DNN method  
1  176.71  157.96  176.71  157.95  176.71  157.95  
2  174.99  79.42  174.98  79.41  174.98  79.41  
3  165.33  353.87  165.34  353.87  165.35  353.87  
4  170.44  12.82  170.44  12.81  170.44  12.84  
5  170.86  15.49  170.85  15.49  170.85  15.49  
6  176.24  224.62  176.25  224.64  176.24  224.64  
7  171.35  20.92  171.35  20.94  171.36  20.94  
8  175.54  97.67  175.57  97.65  175.57  97.65  
9  174.02  55.67  173.98  55.69  173.98  55.69  
10  176.23  119.92  176.22  119.97  176.22  119.97 
1  DUGGAN M, SIMON X, MOSEMAN T. Lander and cislunar gateway architecture concepts for lunar exploration. Proc. of the IEEE Aerospace Conference, 2019. DOI: 10.1109/AERO.2019.8741766. 
2  HAN L NASA updates the artemis mission. Chinese Journal of Space Science, 2020, 40 (6): 967 967. 
3 
QIAN Y Q, XIAO L, HEAD J W, et al Young lunar mare basalts in the Chang ’e5 sample return region, northern Oceanus Procellarum. Earth and Planetary Science Letters, 2021, 555, 116702.
doi: 10.1016/j.jpgl.2020.116702 
4  YANG L Y, ZHANG J, LI H Y, et al Design and characteristic analysis for land module’s translunar trajectory based on multiconic method. Journal of Astronautics, 2019, 40 (12): 1383 1392. 
5  ZHENG A W, ZHOU J P A survey on trajectory design and constrains of manned lunar landing missions. Manned Spacecraft, 2012, 18 (1): 48 54. 
6  PENG K, YANG L Analysis on human lunar exploration flight modes via cislunar space station. Journal of Astronautics, 2018, 39 (5): 471 481. 
7 
TOPPUTO F On optimal twoimpulse Earth–Moon transfers in a fourbody model. Celestial Mechanics and Dynamical Astronomy, 2013, 117 (3): 279 313.
doi: 10.1007/s1056901395138 
8 
LYU M B, TAN M H, ZHOU D M Design of twoimpulse Earth–Moon transfers using differential correction approach. Aerospace Science and Technology, 2017, 60, 183 192.
doi: 10.1016/j.ast.2016.11.008 
9  GAO Y F, WANG Z K, ZHANG Y L Analytical design methods for transfer trajectories between the Earth and the Lunar orbital station. Astrophysics and Space Science, 2018, 363, 206. 
10  MIELE A Theorem of image trajectories in the EarthMoon space. Astronautica Acta, 1960, 6 (51): 225 232. 
11 
ZHOU W M, LI H Y, HE B Y, et al Fixedthrust Earth–Moon free return orbit design based on a hybrid multiconic method of pseudoperilune parameters. Acta Astronautica, 2019, 160, 365 377.
doi: 10.1016/j.actaastro.2019.04.034 
12 
LUO Q Q, YIN J, HAN C Design of EarthMoon freereturn trajectories. Journal of Guidance, Control, and Dynamics, 2013, 36 (1): 263 271.
doi: 10.2514/1.55910 
13 
WEN C X, ZHAO Y S, SHI P Precise determination of reachable domain for spacecraft with single impulse. Journal of Guidance, Control, and Dynamics, 2014, 37 (6): 1767 1779.
doi: 10.2514/1.G000583 
14  PENG Q B. Optimal trajectory design and characteristics analysis for manned lunar landing mission with emergency return capability. Changsha: National University of Defense Technology, 2012: 51−64. (in Chinese) 
15  HE B Y. Analysis approaches for precision reachable sets of manned lunar orbits using numerical continuation theory. Changsha: National University of Defense Technology, 2018: 54−80. (in Chinese) 
16 
LI J Y, GONG S P, BAOYIN H X Generation of multisegment lunar freereturn trajectories. Journal of Guidance, Control, and Dynamics, 2013, 36 (3): 765 775.
doi: 10.2514/1.58427 
17 
HE B Y, LI H Y, ZHOU J P Solution domain analysis of EarthMoon quasisymmetric freereturn orbits. Transactions of the Japan Society for Aeronautical Space Sciences, 2017, 60 (4): 195 201.
doi: 10.2322/tjsass.60.195 
18  LI Z J, GUO L L, PENG K Research on site selection of manned lunar base. Manned Spacecraft, 2015, 21 (2): 158 162. 
19 
IZZO D, MARTENS M, PAN B A survey on artificial intelligence trends in spacecraft guidance dynamics and control. Astrodynamics, 2019, 3 (4): 287 299.
doi: 10.1007/s4206401800536 
20  IZZO D, HENNES D, SIMOES L F, et al. Designing complex interplanetary trajectories for the global trajectory optimization competitions. Space Engineering, 2016, 114: 151−176. 
21 
URIOT T, IZZO D, SIMOES L F, et al Spacecraft collision avoidance challenge: design and results of a machine learning competition. Astrodynamics, 2022, 6 (2): 121 140.
doi: 10.1007/s4206402101015 
22 
LI H Y, CHEN S Y, IZZO D, et al Deep networks as approximators of optimal lowthrust and multiimpulse cost in multitarget missions. Acta Astronautica, 2020, 166, 469 481.
doi: 10.1016/j.actaastro.2019.09.023 
23 
PENG H, BAI X L Artificial neural network–based machine learning approach to improve orbit prediction accuracy. Journal of Spacecraft and Rockets, 2018, 55 (5): 1248 1260.
doi: 10.2514/1.A34171 
24  ZHU Y H, LUO Y Z, YAO W. Fast accessibility evaluation of the mainbelt asteroids manned exploration mission based on a learning method. Proc. of the IEEE Congress on Evolutionary Computation, 2018. DOI: 10.1109/CEC.2018.8477849. 
25  ZHU Y H, LUO Y Z Fast approximation of optimal perturbed longduration impulsive transfers via artificial neural networks. IEEE Trans. on Aerospace and Electronic Systems, 2020, 57 (2): 1123 1138. 
26  YANG F Y X, YANG L P, ZHU Y W, et al. A DNN based trajectory optimization method for intercepting noncooperative maneuvering spacecraft. Journal of Systems Engineering and Electronics, 2022, 33(2): 438−446. 
27 
CHENG L, LI H N, WANG Z K, et al Fast solution continuation of timeoptimal asteroid landing trajectories using deep neural networks. Acta Astronautica, 2020, 167, 63 72.
doi: 10.1016/j.actaastro.2019.11.001 
28  LI X F, DONG L, SUN C Y. Hybrid Qlearning for databased optimal control of nonlinear switching system. Journal of Systems Engineering and Electronics, 2022, 33(5): 1186−1194. 
29 
HORNIK K Approximation capabilities of multilayer feedforward Networks. Neural Networks, 1991, 4 (2): 251 257.
doi: 10.1016/08936080(91)90009T 
30  BERRY R. Launch window and translunar, lunar orbit, and transearth trajectory planning and control for the Apollo 11 lunar landing mission. Proc. of the 8th Aerospace Sciences Meeting, 1970: 24. 
31 
MENG Z F, GAO S, WANG Z S, et al Circumlunar free return trajectories design and validation for highspeed MoontoEarth reentry mission. Science Sinica Technologica, 2015, 45, 249 256.
doi: 10.1360/N09201400474 
[1]  Chengming ZHANG, Yanwei ZHU, Leping YANG, Xin ZENG. An optimal guidance method for freetime orbital pursuitevasion game [J]. Journal of Systems Engineering and Electronics, 2022, 33(6): 12941308. 
[2]  Kwame Bensah KULEVOME Delanyo, Hong WANG, Xuegang WANG. Deep neural network based classification of rolling element bearings and health degradation through comprehensive vibration signal analysis [J]. Journal of Systems Engineering and Electronics, 2022, 33(1): 233246. 
[3]  Xin ZENG, Yanwei ZHU, Leping YANG, Chengming ZHANG. A guidance method for coplanar orbital interception based on reinforcement learning [J]. Journal of Systems Engineering and Electronics, 2021, 32(4): 927938. 
Viewed  
Full text 


Abstract 

