
Journal of Systems Engineering and Electronics ›› 2024, Vol. 35 ›› Issue (2): 495-508.doi: 10.23919/JSEE.2023.000117
• CONTROL THEORY AND APPLICATION • Previous Articles
Luyi YANG1,2(
), Haiyang LI1,3(
), Jin ZHANG1,3,*(
), Yuehe ZHU1,3(
)
Received:2021-09-16
Online:2024-04-18
Published:2024-04-18
Contact:
Jin ZHANG
E-mail:yangluyi@nudt.edu.cn;lihaiyang@nudt.edu.cn;zhangjin@nudt.edu.cn;zhuyuehe@nudt.edu.cn
About author:Supported by:Luyi YANG, Haiyang LI, Jin ZHANG, Yuehe ZHU. Fast solution to the free return orbit’s reachable domain of the manned lunar mission by deep neural network[J]. Journal of Systems Engineering and Electronics, 2024, 35(2): 495-508.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
CL of eight orbit types of FRO"
| Type | Name | TLI phase | VCP phase | PRL phase |
| I | I-0 | Ascending | Ascending | Ascending |
| I-1 | Ascending | Ascending | Descending | |
| II | II-0 | Ascending | Descending | Ascending |
| II-1 | Ascending | Descending | Descending | |
| III | III-0 | Descending | Ascending | Ascending |
| III-1 | Descending | Ascending | Descending | |
| IV | IV-0 | Descending | Descending | Ascending |
| IV-1 | Descending | Descending | Descending |
Table 2
Ranges of the orbit learning database of FROs"
| Parameter | Range |
| 26−30 | |
| 40−44 | |
| 5.5−6.0 | |
| 2029-04-01 00:00:00−2029-07-01 00:00:00 | |
| TLI phase | Ascending, Descending |
| PRL phase | Ascending, Descending |
| VCP phase | Ascending, Descending |
Table 4
Learning features of the RG model"
| Name | Variable |
| Semi-major axis | |
| Eccentricity | |
| Inclination | |
| RAAN | |
| Argument of latitude | |
| LTO height | |
| LTO inclination | |
| PRL height | |
| VCP inclination | |
| VCP height |
Table 8
Learning results for the four RG models"
| Orbit type | Inclination MSE/(°) | RAAN MSE/(°) | Inclination MAE/(°) | RAAN MAE/(°) | Training time/s |
| I-0 | 553 | ||||
| I-1 | 373 | ||||
| II-0 | 523 | ||||
| II-1 | 461 | ||||
| III-0 | 528 | ||||
| III-1 | 545 | ||||
| IV-0 | 542 | ||||
| IV-1 | 535 | ||||
| Average | 507.5 |
Table 10
Difference in the geocentric position of the recognition tool and the landing site (°)"
| Number | Method | |||||||
| Monte Carlo data | PRL method | DNN method | ||||||
| 1 | 176.71 | 157.96 | 176.71 | 157.95 | 176.71 | 157.95 | ||
| 2 | 174.99 | 79.42 | 174.98 | 79.41 | 174.98 | 79.41 | ||
| 3 | 165.33 | 353.87 | 165.34 | 353.87 | 165.35 | 353.87 | ||
| 4 | 170.44 | 12.82 | 170.44 | 12.81 | 170.44 | 12.84 | ||
| 5 | 170.86 | 15.49 | 170.85 | 15.49 | 170.85 | 15.49 | ||
| 6 | 176.24 | 224.62 | 176.25 | 224.64 | 176.24 | 224.64 | ||
| 7 | 171.35 | 20.92 | 171.35 | 20.94 | 171.36 | 20.94 | ||
| 8 | 175.54 | 97.67 | 175.57 | 97.65 | 175.57 | 97.65 | ||
| 9 | 174.02 | 55.67 | 173.98 | 55.69 | 173.98 | 55.69 | ||
| 10 | 176.23 | 119.92 | 176.22 | 119.97 | 176.22 | 119.97 | ||
| 1 | DUGGAN M, SIMON X, MOSEMAN T. Lander and cislunar gateway architecture concepts for lunar exploration. Proc. of the IEEE Aerospace Conference, 2019. DOI: 10.1109/AERO.2019.8741766. |
| 2 | HAN L NASA updates the artemis mission. Chinese Journal of Space Science, 2020, 40 (6): 967- 967. |
| 3 |
QIAN Y Q, XIAO L, HEAD J W, et al Young lunar mare basalts in the Chang ’e-5 sample return region, northern Oceanus Procellarum. Earth and Planetary Science Letters, 2021, 555, 116702.
doi: 10.1016/j.jpgl.2020.116702 |
| 4 | YANG L Y, ZHANG J, LI H Y, et al Design and characteristic analysis for land module’s trans-lunar trajectory based on multi-conic method. Journal of Astronautics, 2019, 40 (12): 1383- 1392. |
| 5 | ZHENG A W, ZHOU J P A survey on trajectory design and constrains of manned lunar landing missions. Manned Spacecraft, 2012, 18 (1): 48- 54. |
| 6 | PENG K, YANG L Analysis on human lunar exploration flight modes via cislunar space station. Journal of Astronautics, 2018, 39 (5): 471- 481. |
| 7 |
TOPPUTO F On optimal two-impulse Earth–Moon transfers in a four-body model. Celestial Mechanics and Dynamical Astronomy, 2013, 117 (3): 279- 313.
doi: 10.1007/s10569-013-9513-8 |
| 8 |
LYU M B, TAN M H, ZHOU D M Design of two-impulse Earth–Moon transfers using differential correction approach. Aerospace Science and Technology, 2017, 60, 183- 192.
doi: 10.1016/j.ast.2016.11.008 |
| 9 | GAO Y F, WANG Z K, ZHANG Y L Analytical design methods for transfer trajectories between the Earth and the Lunar orbital station. Astrophysics and Space Science, 2018, 363, 206. |
| 10 | MIELE A Theorem of image trajectories in the Earth-Moon space. Astronautica Acta, 1960, 6 (51): 225- 232. |
| 11 |
ZHOU W M, LI H Y, HE B Y, et al Fixed-thrust Earth–Moon free return orbit design based on a hybrid multi-conic method of pseudo-perilune parameters. Acta Astronautica, 2019, 160, 365- 377.
doi: 10.1016/j.actaastro.2019.04.034 |
| 12 |
LUO Q Q, YIN J, HAN C Design of Earth-Moon free-return trajectories. Journal of Guidance, Control, and Dynamics, 2013, 36 (1): 263- 271.
doi: 10.2514/1.55910 |
| 13 |
WEN C X, ZHAO Y S, SHI P Precise determination of reachable domain for spacecraft with single impulse. Journal of Guidance, Control, and Dynamics, 2014, 37 (6): 1767- 1779.
doi: 10.2514/1.G000583 |
| 14 | PENG Q B. Optimal trajectory design and characteristics analysis for manned lunar landing mission with emergency return capability. Changsha: National University of Defense Technology, 2012: 51−64. (in Chinese) |
| 15 | HE B Y. Analysis approaches for precision reachable sets of manned lunar orbits using numerical continuation theory. Changsha: National University of Defense Technology, 2018: 54−80. (in Chinese) |
| 16 |
LI J Y, GONG S P, BAOYIN H X Generation of multi-segment lunar free-return trajectories. Journal of Guidance, Control, and Dynamics, 2013, 36 (3): 765- 775.
doi: 10.2514/1.58427 |
| 17 |
HE B Y, LI H Y, ZHOU J P Solution domain analysis of Earth-Moon quasi-symmetric free-return orbits. Transactions of the Japan Society for Aeronautical Space Sciences, 2017, 60 (4): 195- 201.
doi: 10.2322/tjsass.60.195 |
| 18 | LI Z J, GUO L L, PENG K Research on site selection of manned lunar base. Manned Spacecraft, 2015, 21 (2): 158- 162. |
| 19 |
IZZO D, MARTENS M, PAN B A survey on artificial intelligence trends in spacecraft guidance dynamics and control. Astrodynamics, 2019, 3 (4): 287- 299.
doi: 10.1007/s42064-018-0053-6 |
| 20 | IZZO D, HENNES D, SIMOES L F, et al. Designing complex interplanetary trajectories for the global trajectory optimization competitions. Space Engineering, 2016, 114: 151−176. |
| 21 |
URIOT T, IZZO D, SIMOES L F, et al Spacecraft collision avoidance challenge: design and results of a machine learning competition. Astrodynamics, 2022, 6 (2): 121- 140.
doi: 10.1007/s42064-021-0101-5 |
| 22 |
LI H Y, CHEN S Y, IZZO D, et al Deep networks as approximators of optimal low-thrust and multi-impulse cost in multitarget missions. Acta Astronautica, 2020, 166, 469- 481.
doi: 10.1016/j.actaastro.2019.09.023 |
| 23 |
PENG H, BAI X L Artificial neural network–based machine learning approach to improve orbit prediction accuracy. Journal of Spacecraft and Rockets, 2018, 55 (5): 1248- 1260.
doi: 10.2514/1.A34171 |
| 24 | ZHU Y H, LUO Y Z, YAO W. Fast accessibility evaluation of the main-belt asteroids manned exploration mission based on a learning method. Proc. of the IEEE Congress on Evolutionary Computation, 2018. DOI: 10.1109/CEC.2018.8477849. |
| 25 | ZHU Y H, LUO Y Z Fast approximation of optimal perturbed long-duration impulsive transfers via artificial neural networks. IEEE Trans. on Aerospace and Electronic Systems, 2020, 57 (2): 1123- 1138. |
| 26 | YANG F Y X, YANG L P, ZHU Y W, et al. A DNN based trajectory optimization method for intercepting non-cooperative maneuvering spacecraft. Journal of Systems Engineering and Electronics, 2022, 33(2): 438−446. |
| 27 |
CHENG L, LI H N, WANG Z K, et al Fast solution continuation of time-optimal asteroid landing trajectories using deep neural networks. Acta Astronautica, 2020, 167, 63- 72.
doi: 10.1016/j.actaastro.2019.11.001 |
| 28 | LI X F, DONG L, SUN C Y. Hybrid Q-learning for data-based optimal control of non-linear switching system. Journal of Systems Engineering and Electronics, 2022, 33(5): 1186−1194. |
| 29 |
HORNIK K Approximation capabilities of multilayer feedforward Networks. Neural Networks, 1991, 4 (2): 251- 257.
doi: 10.1016/0893-6080(91)90009-T |
| 30 | BERRY R. Launch window and translunar, lunar orbit, and transearth trajectory planning and control for the Apollo 11 lunar landing mission. Proc. of the 8th Aerospace Sciences Meeting, 1970: 24. |
| 31 |
MENG Z F, GAO S, WANG Z S, et al Circumlunar free return trajectories design and validation for high-speed Moon-to-Earth reentry mission. Science Sinica Technologica, 2015, 45, 249- 256.
doi: 10.1360/N092014-00474 |
| [1] | Chengming ZHANG, Yanwei ZHU, Leping YANG, Xin ZENG. An optimal guidance method for free-time orbital pursuit-evasion game [J]. Journal of Systems Engineering and Electronics, 2022, 33(6): 1294-1308. |
| [2] | Kwame Bensah KULEVOME Delanyo, Hong WANG, Xuegang WANG. Deep neural network based classification of rolling element bearings and health degradation through comprehensive vibration signal analysis [J]. Journal of Systems Engineering and Electronics, 2022, 33(1): 233-246. |
| [3] | Xin ZENG, Yanwei ZHU, Leping YANG, Chengming ZHANG. A guidance method for coplanar orbital interception based on reinforcement learning [J]. Journal of Systems Engineering and Electronics, 2021, 32(4): 927-938. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||